
INFINITELY DIVISIBLE DISTRIBUTIONS
Introduction

In these notes we discuss basic properties of in�nitely divisible and stable
distributions on R. In�nitely divisible stochastic processes and domains of at-
traction are some important topics which will not be discussed here. They will
be discussed in a future volume. Also, in�nitely divisible and stable distributions
on a Banach space will be studied in Volume 2 of these notes.

Measure theoretic preliminaries: if � and � are Borel probability mea-

sures on R we de�ne the convolution � � � by (� � �)(E) =
Z
R

�(E � x)d�(x)

where E � x stands for fy � x : y 2 Eg. Noting that If(x;y)2R2:x+y2Eg
is a Borel measurable function on R2 for every Borel set E in R we con-

clude that
Z
R

Z
R

If(x;y)2R2:x+y2Egd�(x)d�(y) =

Z
R

Z
R

If(x;y)2R2:x+y2Egd�(y)d�(x)

which shows that � � � = � � �. Of course, � � � is also a probability measure.
Notations: w! denotes weak convergence (or convergence in distribution),

p!
denotes convergence in probability and X d

= Y means X and Y have the same
distribution.

Suppose �1 = � and �n+1 = �n � �; n = 1; 2; : : :. We call �n the n� fold
convolution of � with itself. If �n = � then � is called an n� th root of �. For a
given probability measure � and a given integer n there may be no n� th root.
[Examples will be given later]

A useful tool in studying roots of probability measures is the characteristic
function. We shall write �̂ for the characteristic function of �. Recall that

�̂(t) =

Z
R

eitxd�(x). We assume that the reader is familiar with basic properties

of characteristic functions. We reformulate the concept of n� th root as follows:
a characteristic function � has an n� th root if there exists another charac-

teristic function  such that  n(t) = �(t) 8t 2 R.characteristic functions then
 1 �  2: indeed

Uniqueness: if  n1 (t) =  n2 (t) where  1 and  2 are both
characteristic functions and  1 never vanishes then

 1(t)
 2(t)

is an n� th root

of unity for each t. By continuity it follows that  1(t) 2(t)
is an n� th root of unity

which is independent of t. However  1(0) 2(0)
= 1 so  1(t)

 2(t)
� 1.

A probability measure � (or its characteristic function �) is called in�nitely
divisible (i.d.) if it has an n� th root for every positive integer n. We call a
random variable in�nitely divisible if the induced measure is.

1



We can also formulate these concepts in terms of random variables: X is i.d.
if, for each n, there exist independent identically distributed (i.i.d.) random
variable X1;n; X2;n ; : : : ; Xn;n (not necessarily on the same probability space)

such that X1;n +X2;n + : : :+Xn;n
d
= X.

Examples:

1. Let �(t) = eicte�t
2�2=2 where c 2 R and � > 0. � is the char-

acteristic function of normal distribution with mean c and variance �2. If
�n(t) = eict=ne�t

2�2=(2n) then �n is the characteristic function of normal distri-
bution with mean c=n and variance �2=n. Also �nn = �. Hence � is i.d..

2. Uniform distribution on an interval is not i.d.. We shall show that no
non-constant bounded random variable can be i.d.! suppose X1; X2; : : : ; Xn are

i.i.d. and X1 + X2 + : : : + Xn
d
= X where X is a bounded random variable,

say with jXj � M a.s.. Then V ar(X1) =
1
nV ar(X). We claim that jX1j � M

n

almost surely (a.s.). In fact, 0 = PfX > Mg � PfX1 >
M
n ; X2 >

M
n ; : : : ; Xn >

M
n g = PnfX1 >

M
n g so PfX1 >

M
n g = 0; similarly, PfX1 < �M

n g = 0 so

jX1j � M
n a.s.. This implies that V ar(X1) � M2

n2 and hence V ar(X) � M2

n .
If X is i.d. then this inequality holds for every n so V ar(X) = 0 which is a
contradiction.

3. Let X be Cauchy random variable. The characteristic function of X is

given by EeitX = e�jtj. It follows that Ee
it(X

n
)

= Eei(
t
n )X = e�

jtj
n . Hence e�

jtj
n

is a characteristic function whose n� th power is the characteristic function of
X.

4. Let X take the values 0 and 1 with probability pand 1 � p. Suppose

there exist i.i.d. random variables Y and Z such that X d
= Y + Z. Then

1 = PfY + Z 2 f0; 1g)g =
Z
PfZ 2 f0; 1g � ygd�(y) where � is the measure

induced by Y . Since the integrand takes values on [0; 1] it follows that PfZ 2
f0; 1g � yg = 1 almost everywhere (a.e.) with respect to �. In particular there
exists a real number y such that PfZ 2 f�y; 1 � ygg = 1. Hence, we also
havePfY 2 f�y; 1 � ygg = 1. Note that PfY = �yg and P (Y = 1 � yg
must both be non-zero. (Otherwise Y , hence Z, would be constants and so
would be X, a contradiction). If u 2 f�y; 1 � yg + f�y; 1 � yg then PfX =
ug = PfY + Z = ug > 0. [ If u = u1 + u2 where u1; u2 2 f�y; 1 � yg then
PfX = ug � PfY = u1; Z = u2g � PfY = u1gPfZ = u2g > 0]. Hence the
possible values of X are the points of f�y; 1 � yg + f�y; 1 � yg which implies
f�y; 1 � yg + f�y; 1 � yg = f0; 1g. That there is no such real number y is
obvious.

5. Discrete random variables may be i.d.. Let X have the Poisson dis-
tribution with parameter �. Then PfX = ng = e�� �

n

n! ; n = 0; 1; 2; : : : and

2



Eeitx =
1X
n=0

eitne�� �
n

n! = e�(e
it�1). Hence Poisson distribution with parameter

�=n is an n� th root of the one with parameter �.

6. Geometric distribution is i.d.: if PfX = ng = (1�p)pn; n = 0; 1; 2; : : :where
0 < p < 1 then Eeitx = 1�p

1�peit . We leave it as an exercise to show that if

PfXn = kg =
�
n+ k � 1

k

�
pk(1� p)n then Eeitx = (EeitXn)n. More gener-

ally negative Binomial distribution is i.d. by a similar argument.

7. Let X have the Gamma distribution with parameters a and b. Then X
has density f(x) = bae�bxxa�1

�(a) where a; b > 0. Then Eeitx = 1
(1�iat)b where

(1� iat)b is de�ned as ebLog(1�iat), Log being the principle branch of logarithm.
It is now obvious that X is i.d.

8. Suppose f(x) = (1�jxj)+. f is the density function of a random variable

X. We have EeitX = 2

1Z
0

(1�x) cos(tx)dx = 2 1�cos tt2 for t 6= 0. It is shown below

that an i.d. characteristic function has no zeros. Since 1�cos t = 0 for t = 2� it
follows that X is not i.d.. Also 2 1�cos tt2 is a density function whose characteristic
function is f(x) which has zeros, hence 2 1�cos tt2 is not an i.d. density function;
the inversion theorem from Fourier analysis makes these points obvious].

It is now clear that it may be hard to determine if a given distribution is i.d..
For more information on in�nite divisibility of speci�c distributions we refer the
reader to the book "In�nite Divisibility Of Probability Distributions On The
Real Line" by Steutel and van Harn.

Remark: constant random variables are i.d. and linear combinations of in-
dependent i.d. distributions are i.d. In particular, if � and � are i.d. so is
� � �. (Equivalently, product of two i.d. characteristic functions if i.d.). Proofs
of these are left to the reader. Also note that if X is i.d. with characteristic
function � and fX;Y g is i.i.d. then the characteristic function of X �Y is j�j2.
Hence j�j2 is an i.d. characteristic function whenever � is.

We now describe a procedure for generating i.d. distributions from arbitrary
distributions.

Theorem 1

Let � be any characteristic function and � > 0. Then e��(1��(t)) is an i.d.
characteristic function.
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Proof: we have e��(1��(t)) = lim
n!1

(1 � �(1��(t))
n )n for each t. Note that

1� �(1��(t))
n = (1� �

n )+
�
n�(t). Hence, if �(t) =

Z
eitxd�(x) then 1� �(1��(t))

n =Z
eitxd�(x) where � = (1� �

n )�0+
�
n�. Since � is a probability measure it follows

that 1� �(1��(t))
n is a characteristic function and so is (1� �(1��(t))

n )n. By the
Continuity Theorem for characteristic functions it now follows that e��(1��(t))

is a characteristic function. This characteristic function is the n� th power of
e�

�
n (1��(t)), which is also a characteristic function. This completes the proof.

We may ask if the characteristic functions constructed above exhaust all i.d.
ones. The answer is no. Let us show that the normal characteristic function
�(x) = e�x

2=2 is not of above type. If e�x
2=2 = e��(1��(x)) 8x then x2=2 =

�(1� Re�(x)). This is clearly a contradiction since the right side is bounded.

Exercise
Show that for each positive integer n there exists a characteristic function

� such that � is not i.d. but it is the k� the power of a characteristic function
for each k � n.

Solution: � =  n!0 where  is a characteristic function which has a zero.
One of our main jobs is to characterize i.d. characteristic functions. This

is done below in Levy - Khinchine Theorem. See also Schoenberg�s theorem
below. Before doing this we prove some basic facts about i.d. distributions.

We �rst recall an elementary result from complex analysis.

Lemma 2

Let f : [a; b] ! C be a continuous function such that f(x) 6= 0 for any
x 2 [a; b]. Then there exists a continuous function g : [a; b] ! C such that
f = eg. If c 2 [a; b] and f(c) = ez then we can choose g such that g(c) = z.
With this condition g is unique. The conclusion also holds if the domain of f is
R.

Proof: there is no loss of generality in assuming that f(a) = 1. If � =

inffjf(t)j : a � t � bg then 0 < � � 1. For jz � 1j � 1
2 let l(z) =

1X
k=1

(�1)k
k (z �

1)k. Then l is analytic in B(1; 12 ); continuous on the closure of this ball and

l0(z) =
1X
k=1

(�1)k(z � 1)k�1 = 1
1�(1�z) =

1
z . It follows that (e

�l(z)z)0 = 0 in

B(1; 12 ) so e
�l(z)z is a constant. Since l(1) = 0 we get e�l(z)z = 1 or el(z) = z

8z 2 B(1; 12 ). Since f is uniformly continuous on [a; b] there exists � > 0 such
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that jf(t1)� f(t2)j < �
2 if jt1 � t2j � �. Let ftj : 0 � j � Ng be a partition of

[a; b] such that tj+1 � tj � � for 0 � j < N . De�ne g as follows: g(t) = l(f(t))

if t 2 [t0; t1] and g(t) = g(tk) + l( f(t)f(tk)
) if tk � t � tk+1 for k = 1; 2; : : : ; N � 1.

Note that if tk � t � tk+1 then
���1� f(t)

f(tk)

��� = jf(t)�f(tk)j
jf(tk)j � jf(t)�f(tk)j

� < 1
2 so

g(t) is well de�ned. Also note that g is continuous on [a; b] and eg(t) = eg(tk) f(t)f(tk)

for tk � t � tk+1 with eg(t) = f(t) in [t0; t1]. It follows easily that eg(t) = f(t)
8t 2 [a; b]. The fact that if c 2 [a; b] and f(c) = ez then we can choose g
such that g(c) = z and the uniqueness of g are both obvious from the fact that
ez1 = ez2 if and only if z1 � z2 = 2n�i for some integer n. [ Note that if n
depends on t 2 [a; b] and if t! n is continuous then n is necessarily a constant].
If the domain [a; b] of f is replaced by R, we can �nd continuous functions
gn : [�n; n]! C such that egn = f on [�n; n]. Since egn = egn+1 on [�n; n] we
have gn+1 = gn + 2kn�i where kn is an integer valued function on [�n; n]. By
continuity, kn is actually a constant, Replacing gn+1 by gn+1 � 2kn�i we can
make sure that gn+1 = gn on gn+1 = gn + 2kn�i. An induction argument now
shows that g0ns can be de�ned consistently on R. This gives us a continuous
function g on R with eg = f . Note, in particular, that g can be chosen to vanish
at 0 if f is a characteristic function with no zeros.

Theorem 3
If � is an i.d. characteristic function then �(t) 6= 0 8t 2 R.

Proof: for n = 1; 2; : : : let �n be a characteristic function such that �
n
n = �.

Let  (t) = j�(t)j2 and  n(t) = j�n(t)j
2 for n = 1; 2; : : :. Then  n(t) =  1=n(t).

Hence lim
n!1

 n(t) =

�
1 if  (t) 6= 0
0 if  (t) = 0

. Recall that  and  n are characteristic

functions. Since  (t) 6= 0 for jtj su¢ ciently small it follows (by continuity
theorem) that lim

n!1
 n(t) is necessarily continuous. Hence lim

n!1
 n(t) � 1 and

 (t) 6= 0 8t. This implies �(t) 6= 0 8t.

Is the converse true? In other words, if � is a characteristic function which
never vanishes can we conclude that � is i.d.? The answer is no. In fact if
X takes the values 0; 1 and �1 with probabilities 3

4 ;
1
8 and

1
8 then EeitX =

3
4 +

1
8e
it + 1

8e
�it = 3

4 +
1
4 cos t which never vanishes. Of course, X is not i.d..

Combining above theorem and the lemma before it we conclude that if � is
an i.d. characteristic function then there is a unique continuous function g on
R such that g(0) = 0 and eg(t) = �(t) 8t. Throughout these notes we write
log � for g. g is called the distinguished logarithm of �. Note that if � is a
non-negative i.d. (hence strictly positive) characteristic function with � = �nn
where fn is a characteristic function then �n = �1=n because ( �n

�1=n
)n � 1 so

�n
�1=n

is an n� the root of unity. However �n(t)

�1=n(t)
is continuous so �n

�1=n
= c

where c is an n� th root of unity independent of t. But �n(0) = �1=n(0) = 1
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so �n � �1=n. In particular �1=n is a characteristic function for each n. Also
g(t) = log �(t) is the natural logarithm of the positive number �(t).

Exercise

If f is a strictly positive characteristic function then
p
f need not be a

characteristic function

Hint: 3+cos t4 is the characteristic function of a random variable taking values
0; 1 and �1 with probabilities 3

4 ;
1
8 and

1
8 respectively. It is impossible to �nd

i.i.d. random variable X and Y such that X+Y has this distribution. (Why?).

Hence
q

2+cos t
3 is not a characteristic function

Theorem 4

If f�ng is a sequence of i.d. characteristic functions and �n ! � pointwise
where � is continuous at 0 then � is i.d..

Proof: the Continuity Theorem for characteristic functions shows that � is
indeed a characteristic function. We claim that �(t) 6= 0 8t. Recall that j�j2

and j�nj
2 are characteristic functions. Let  (t) = j�(t)j2 and  n(t) = j�n(t)j

2.
Then  1=mn (t) !  1=m(t) for m = 1; 2; : : :. As observed earlier  1=mn is a
characteristic function. By Continuity Theorem  1=m is also a characteristic
function. It follows that  is i.d.. Hence  never vanishes implying that � never
vanishes. We have proved the claim. Now we recall that for a characteristic
function � with no zeros we de�ned g = log � by g(t) = l(�(t)) if t 2 [t0; t1]
and g(t) = g(tk) + l( �(t)�(tk)

) if tk � t � tk+1 for k = 1; 2; : : : ; N � 1 where ftjg
is a suitable partition. [If � = inf j�(t)j : jtj � Ng and � is chosen such that
j�(t)� �(s)j < �

2 whenever jt� sj � � the partition ftjg is chosen such that
tj+1 � tj � �]. Now let gn = log �n be de�ned by gn(t) = l(�n(t)) if t 2 [t0; t1]
and gn(t) = gn(tk) + l( �n(t)�n(tk)

) if tk � t � tk+1 for k = 1; 2; : : : ; N � 1; If
�n = inf j�n(t)j : jtj � Ng and �n is chosen such that j�n(t)� �n(s)j <

�n
2

the partition ftjg can be chosen such that tj+1 � tj � �n: recall from basic
theory of characteristic functions that �n ! � uniformly on [�N;N ]. Ignoring
a �nite number of integers n we can �nd �0 independent of n such that 0 <
�0 � minfj�n(t)j ; j�(t)jg. Also the condition j�n(t)� �n(s)j < �

2 whenever
jt� sj � � holds with � independent of n (by uniform convergence). Hence the
same partition can be used in the de�nitions of g and g0ns. Since l is uniformly
continuous on the compact set fz : jz � 1j � 1

2g it is clear that gn ! g uniformly
on [�N;N ]. If m 2 N then eg=m = lim egn=m and egn=m is a characteristic
function. (Why?). Applying the Continuity Theorem again we conclude that
eg=m is a characteristic function. Since (eg=m)m = � and m is arbitrary we have
proved that � is i.d..
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Notation: if � is an i.d. probability measure on R and n � 1, there is a
unique probability measure �n on R such that the n�fold convolution of �n
with itself if �. We write �1=n for �n.

We now discover more i.d. distributions using above theorem; our aim is to
characterize all i.d. characteristic functions.

Theorem 5

Let � be a �nite positive Borel measure on R with �(f0g) = 0 and

�(t) = eicte

1Z
�1

(eitx�1� itx
1+x2

) 1+x
2

x2
d�(x)

where (eitx � 1 � itx
1+x2 )

1+x2

x2 is de�ned as � t2

2 at x = 0. Then � is an i.d.
characteristic function.

Remark: � t2

2 = lim
x!0

(eitx � 1� itx
1+x2 )

1+x2

x2 .

Proof: it is enough to prove that � is a characteristic function for any �nite
measure � because we can get the n� th root of � by replacing � by 1

n�. We

�rst observe that e�(e
itx�1� itx

1+x2
) is a characteristic function for any � > 0

and x 2 R. In fact, if X has Poisson distribution with parameter � then the

characteristic function of xX � �x
1+x2 is e

�(eitx�1� itx
1+x2

). From this we claim

that e

1Z
�1

(eitx�1� itx
1+x2

)d�(x)

is a characteristic function for any �nite measure � .
Since this function is continuous it su¢ ces show that it is a point-wise limit of

characteristic functions. Now

1Z
�1

(eitx � 1 � itx
1+x2 )d�(x) = lim

N!1

NZ
�N

(eitx � 1 �

itx
1+x2 )d�(x).

Hence it su¢ ces to show that e

bZ
a

(eitx�1� itx
1+x2

)d�(x)

is a characteristic func-
tion for any a < b. If fxj : 0 � j � kg is the partition obtained by dividing [a; b]

into n equal parts then
kX
j=1

(eitxj�1� itxj
1+x2j

)I[xj�1;xj)�
kX
j=1

(eitx�1� itx
1+x2 )! 0 as

n!1 ( in fact uniformly on [a; b]) so it su¢ ces to show that e
�jfeitxj�1�

itxj

1+x2
j

g

is a characteristic function, where �j = �fxj�1; xj). Since e�fe
itc�1� itc

1+c2
g is a
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characteristic function for any � > 0 and c 2 R, the proof of the claim is com-

plete. Thus e

1Z
�1

(eitx�1� itx
1+x2

)d�(x)

is a characteristic function for any �nite mea-

sure � . Now e

1Z
�1

(eitx�1� itx
1+x2

) 1+x
2

x2
d�(x)

= lim e

Z
fjxj> 1

ng

(eitx�1� itx
1+x2

) 1+x
2

x2
d�(x)

=

lim e

1Z
�1

(eitx�1� itx
1+x2

)d�n(x)

where d�n(x) = Ifjxj> 1
ng

1+x2

x2 d�(x). Since each �n is
a �nite measure the proof of the theorem is complete.

Remark:

�(t) = e��
2t2=2eicte

1Z
�1

(eitx�1� itx
1+x2

) 1+x
2

x2
d�(x)

is also an i.d. characteristic
function if � > 0.
The converse of this is also true: any i.d. characteristic function is of this

type for some real number c, some � > 0 and some �nite measure �.

Before proving this we prove that c; �; � are uniquely determined by eicte��
2t2=2e

1Z
�1

(eitx�1� itx
1+x2

) 1+x
2

x2
d�(x)

.

If eic1te��
2
1t
2=2e

1Z
�1

(eitx�1� itx
1+x2

) 1+x
2

x2
d�1(x)

= eic2te��
2
2t
2=2e

1Z
�1

(eitx�1� itx
1+x2

) 1+x
2

x2
d�2(x)

8t
then c1 = c2; �1 = �2 and �1 = �2. We �rst take absolute values and logarithms
on both sides to get

��21t2=2+
1Z

�1

(cos(tx)�1) 1+x2x2 d�1(x) = ��22t2=2+
1Z

�1

(cos(tx)�1) 1+x2x2 d�2(x).

Replacing t by t=a and multiplying by a2 we get ��21t2=2 + a2
1Z

�1

(cos( txa ) �

1) 1+x
2

x2 d�1(x) = ��22t2=2+a2
1Z

�1

(cos( txa )�1)
1+x2

x2 d�2(x). We claim that a2
1Z

�1

(cos( txa )�

1) 1+x
2

x2 d�j(x) ! 0 as a ! 0 for j = 1; 2. This would show that �1 = �2.

Since 1 � cos( txa ) �
t2x2

a2 the we have a2
���(cos( txa )� 1) 1+x2x2

��� � a2 t
2x2

a2
1+x2

x2 =

t2(1 + x2). Hence, by Dominated Convergence Theorem, a2
Z

fjxj�1g

(cos( txa ) �
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1) 1+x
2

x2 d�j(x)! 0 as a! 0 for j = 1; 2. Also a2
Z

fjxj>1g

(cos( txa )�1)
1+x2

x2 d�j(x) �

2a2
Z

fjxj>1g

1+x2

x2 d�j(x) � 4a2�j(R) ! 0 as a ! 0 for j = 1; 2. We have now

proved that �1 = �2. Hence eic1te

1Z
�1

(eitx�1� itx
1+x2

) 1+x
2

x2
d�1(x)

= eic2te

1Z
�1

(eitx�1� itx
1+x2

) 1+x
2

x2
d�2(x)

8t

which implies ic1t +

1Z
�1

(eitx � 1 � itx
1+x2 )

1+x2

x2 d�1(x) = ic2t +

1Z
�1

(eitx � 1 �

itx
1+x2 )

1+x2

x2 d�2(x) 8t. [ The two sides of this equation may di¤er by an integer
multiple of 2�; however, the two sides are continuous and vanish at 0 and hence
they are equal]. Replacing t be t+s, then by t�s. and adding the two equations
we get

2ic1t+

1Z
�1

(2eitx cos(sx)�2� 2itx
1+x2 )

1+x2

x2 d�1(x) = 2ic2t+

1Z
�1

(2eitx cos(sx)�

2 � 2itx
1+x2 )

1+x2

x2 d�2(x) 8t; s. Replacing t in the previous equation by 2t and
subtracting the resulting equation from this equation we get

1Z
�1

eitx(cos(sx)�1) 1+x2x2 d�1(x) =

1Z
�1

eitx(cos(sx)�1) 1+x2x2 d�2(x) 8t; s. It fol-

lows that the �nite measures (cos(sx)�1) 1+x2x2 d�1(x) and (cos(sx)�1) 1+x
2

x2 d�2(x)
have the same characteristic function. Hence, these two measures are equal. It
follows that �1 and �2 coincide on Borel subsets of fx : cos(sx) 6= 1g for every
s 2 R. Since there is no x such that cos(x) = 1 and cos(

p
2x) = 1 it follows

that �1 = �2. (The reader is asked to �ll in the details of this argument). It is
now obvious that c1 = c2.

A modi�ed version of this is the following:

Z
eitxd�(x) = eicte��

2t2=2e

1Z
�1

(eitx�1� itx
1+x2

)d�(x)

8t for some real number c

and positive number � where � is a positive measure such that

1Z
�1

x2

1+x2 d�(x) <

1: This representation is called the Levy-Khinchine representation and the
unique measure � is called the Levy measure of �.
It would follow from the next theorem that every i.d. probability measure �

has a unique Levy measure � related by an equation of the type

9



Z
eitxd�(x) = eicte��

2t2=2e

1Z
�1

(eitx�1� itx
1+x2

)d�(x)

8t for some real number c
and positive number �. Further, there is always an i.d. measure � corresponding

to any positive measure � such that

1Z
�1

x2

1+x2 d�(x) <1, any real number c and

any positive number �.

Theorem 6

Every i.d. characteristic function � is of the type �(t) = eicte��
2t2=2e

1Z
�1

(eitx�1� itx
1+x2

)d�(x)

8t for some real number c, some positive measure � satisfying the condition
1Z

�1

x2

1+x2 d�(x) <1 and positive number �.

Remark: the proof is somewhat lengthy and �rst time readers may read it
at a later stage.

We need two lemmas:

Lemma 7

Let � be i.d. and �n be the characteristic function whose n�th power is

� (n = 1; 2; : : :). Then lim sup
n!1

n�nfx : jxj > ag � a�

1=aZ
0

jRe g(t)j dt where �n

is the measure whose characteristic function is �n, a > 0 and g = log � and
� = 1

inff(1� sin t
t :jtj�1g .

[ Recall that g is the unique continuous function such that eg = � and
g(0) = 0].

To prove the lemma we start with the standard inequality �nfx : jxj > ag �

a�

1=aZ
0

f1 � Re�n(t)gdt. [Proposition 8.29, p. 171 of Probability by Breiman]

where � = 1
inff(1� sin t

t :jtj�1g . We claim that n(�n(t)� 1)! g(t) 8t. This follows

from the fact that e
g(t)
n = �n(t) 8t and the fact that n(e

z
n � 1) ! z 8z 2 C.

[ To see that e
g
n = �n note that both sides have the same n� th power; by

continuity of g and �n it follows that e
g
n =�n is a constant which must be 1

because g(0) = 0 and �n(0) = 1]. It follows now that lim sup
n!1

n�nfx : jxj > ag �

10



lim sup
n!1

a�n

1=aZ
0

f1 � Re�n(t)gdt = �a�
1=aZ
0

Re g(t)dt � a�

1=aZ
0

jRe g(t)j dt. [ We

have used Dominated Convergence Theorem here; note that f1 � Re�n(t)g =
f1 � Re e

g(t)
n g �

���e g(t)n � 1
��� � (eCn � 1) where C = supfjg(t)j : 0 � t � 1

ag and
that n(e

C
n � 1)! C as n!1 which implies that fn(eCn � 1)g is bounded.

Lemma 8

lim supn
n!1

Z
fx:jxj�1g

x2d�n(x) <1.

Proof of the lemma: nf1�Re�n(t)g � n

1Z
�1

(1�cosxgd�n(x) � n

Z
fjxj�1g

(1�

cosxgd�n(x) � n�

Z
fjxj�1g

x2d�n(x) where � = inff 1�cos xx2 : jxj � 1g. [ We inter-

pret 1�cos xx2 as 12 whenx = 0; note that � > 0]. It follows that lim supn
n!1

Z
fx:jxj�1g

x2d�n(x) �

1
� lim supn

n!1
f1� Re�n(t)g = � 1

� Re g(t) <1.

Finally, we prove the Levy-Khinchine formula for �.

Let �n be de�ned by d�n(x) = nx2

1+x2 d�n(x). We have �n(R) =
Z

fx:jxj�1g

nx2

1+x2 d�n(x)+

Z
fx:jxj>1g

nx2

1+x2 d�n(x). By

Lemma 8, lim sup
Z

fx:jxj�1g

nx2

1+x2 d�n(x) � lim sup

Z
fx:jxj�1g

nx2d�n(x) < 1.

By Lemma 7, lim sup
Z

fx:jxj>1g

nx2

1+x2 d�n(x) � lim supn�nfx : jxj > 1g < 1.

Hence f�ng is a sequence of positive �nite measures with supf�n(R) : n � 1g <

1. Let �n = �n
�n(R) . We have g(t) = limnf�n(t)�1) = lim

1Z
�1

n(eixt�1)d�n(x)

= limf
1Z

�1

(eixt � 1� itx
1+x2 )

1+x2

x2 d�n(x) + int

1Z
�1

x
1+x2 d�n(x)g

11



= limf�n(R)
1Z

�1

(eixt�1� itx
1+x2 )

1+x2

x2 d�n(x)+it�ng where �n = n

1Z
�1

x
1+x2 d�n(x).

The rest of the proof is along the following lines: we show that lim inf �n(R) >
0 and that f�ng is tight. It will then follow that for some integers n1 < n2 < : : :,
f�njg converges to a positive number � and f�njg converges weakly to a proba-
bility measure �0. Since (eixt�1� itx

1+x2 )
1+x2

x2 is a bounded continuous function

on R it follows that � = lim�nj necessarily exists and g(t) = �

1Z
�1

(eixt � 1 �

itx
1+x2 )

1+x2

x2 d�0(x) + it�. Recall that (eixt � 1 � itx
1+x2 )

1+x2

x2 equals � t2

2 when
x = 0. Let �1 be the restriction of ��0 to Rnf0g. Then we get

�(t) = eg(t) = e

1Z
�1

(eixt�1� itx
1+x2

) 1+x
2

x2
d�1(x)+it�� t2

2 ��0f0g

= e

1Z
�1

(eixt�1� itx
1+x2

)d�(x)+it�� t2

2 ��0f0g

where d�(x) = 1+x2

x2 d�1(x). This �nishes the proof.

Proof of � � lim inf �n(R) > 0: if lim inf �n(R) = 0 then there exists nk " 1

such that �nk(R) ! 0. Hence

1Z
�1

(eixt � 1 � itx
1+x2 )

1+x2

x2 d�nk(x) ! 0. [ The

integrand is a bounded function of x for �xed t]. But g(t) = limf
1Z

�1

(eixt �

1 � itx
1+x2 )

1+x2

x2 d�nk(x) + it�nkg so g(t) = lim it�nk 8t. This implies that
g(t) = it� for some � and hence �(t) = eit� in which case there is nothing
to prove. It remains to show that f�ng is tight. We have �nfjxj > ag =
�nfjxj>ag
�n(R) = 1

�n(R)

Z
fjxj>ag

nx2

1+x2 d�n �
n�nfjxj>ag

�n(R) and hence lim sup �nfjxj > ag �

a�
�

1=aZ
0

jRe g(t)j dt by Lemma 7. Tightness of f�ng follows clear since g(t) ! 0

as t! 0+.

Proposition 9

A positive measure � is the Levy measure of an i.d. measure if and only ifZ
minf1; x2gd�(x) <1.

Proof: we only have to show that
Z

x2

1+x2 d�(x) <1 if and only if
Z
minf1; x2gd�(x) <

1. For this it su¢ ces to observe that x2

1+x2 � minf1; x
2g andminf1; x2g � 2x2

1+x2 .

12



Notation: we write �[�; �; �] for the probability measure � whose character-

istic function is e

1Z
�1

(eixt�1� itx
1+x2

)d�(x)+it�� t2�2

2

.

Theorem 10

If �[cn; �n; �n]! �[c; �; �] then cn ! c and �njfjxj>�g ! �jfjxj>�g for every
� > 0. It does not follow that �n ! �.

We do not prove this theorem here. A proof for i.d. laws on Banach spaces
will be given in Volume 2 of these notes.

De�nition: two probability measures � and � on R are said to be of the same
type if there exist real numbers a and b with a > 0 such that �(E) = �(aE + b)
for every Borel set E. Two random variables X and Y are of the same type if

Y
d
= aX + b for some a > 0 and b 2 R. This is equivalent to the fact that the

induced measures are of the same type. Two characteristic functions �1 and �2
are said to be of the same type if �1(t) = eibt�2(at) 8t 2 R. Random variables
X and Y are of the same type if and only if their characteristic functions are.

Exercise

Verify that being of the same type is an equivalence relation in the class of
probability measures or the class of characteristic functions. Also verify that
the equivalence class of the standard normal distribution is precisely the class
of all normal distributions.

Theorem 11 [Convergence of Types Theorem]

Let Xn
d! X and anXn + bn

d! Y where an > 0; bn 2 R 8n. If X and
Y are non-degenerate then there exist numbers a > 0 and b 2 R such that

an ! a; bn ! b and Y d
= aX + b.

Proof: let �1; �2 and  n be the characteristic functions of X;Y and Xn

respectively. Then  n ! �1 and e
itbn n(ant) ! �2(t) uniformly on compact

sets. If fang is not bounded then some subsequence fankg will increase to 1.
In this case, for any � > 0, sup

jtj��

��eitbnk nk(ankt)! �2(t)
��! 0. For any t 2 R,

t
ank

2 [��;�] for k su¢ ciently large so eitbnk=ank nk(t) � �2(
t

ank
) ! 0. This

shows that eitbnk=ank nk(t) ! 1. But  nk(t) ! �1(t) so e
itbnk=ank ! 1

�1(t)

provided jtj is so small that �1(t) 6= 0. As a consequence of this lim
bnk
ank

(= c;

13



say) exists and �1(t) = e�itc for jtj su¢ ciently small. This makes �1 generate
which is a contradiction. We have proved that fang is bounded. Let a0 be a limit
point of fang. Arguing as above we see that sup

jtj��

��eitbnk nk(ankt)! �2(t)
��! 0

and  nk(ankt) ! �1(a0t) with ank ! a0. It follows that eitbnk ! �2(t)
�1(a0t)

for

jtj su¢ ciently small; this implies b = lim bnk exists and eitb�1(a0t) = �2(t) for
jtj su¢ ciently small. Note that a0 cannot be 0 because �2 is non-degenerate. If
a00 is another limit point of fang we get j�1(at)j = j�1(a00t)j for jtj su¢ ciently
small. If a00 < a0 then

����1(a00a0 t)��� = j�1(t)j for jtj su¢ ciently small which implies����1f(a00a0 gnt)��� = j�1(t)j 8n for jtj su¢ ciently small and hence j�1(t)j = 1 for jtj
su¢ ciently small. This is a contradiction. A similar argument shows that we
cannot have a0 < a00. Hence fang has a unique limit point a and a > 0. Now��eitbn�1(at)� eitbn n(ant)�� = j�1(at)�  n(ant)j ! 0 and eitbn n(ant)! �2(t)
so eitbn�1(at)! �2(t) 8t. It follows that lim bn = b exists and eitb�1(at) = �2(t)

8t which says Y d
= aX + b.

Exercise

Let � be i.d. and g = log �. If c > 0 show that ecg is also an i.d. characteristic
function.

Can you prove this without using the Levy-Khinchine Representation The-
orem?

Theorem 12 [Schoenberg]

Let f : R ! C be continuos with f(0) = 0. Then ef is the characteristic
function of an in�nitely divisible distribution � if and only if the following
conditions hold:

a) �f(�x) = f(x) 8x

b)
NX

j;k=1

cj�ckf(tj � tk) � 0 whenever N 2 N; tj 2 R; cj 2 C for 1 � j � N

and
NX
j=1

cj = 0.

Proof: if ef is the characteristic function of an in�nitely divisible distrib-
ution then e�f is a characteristic function for each � > 0. Hence it is positive

de�nite for each � > 0. But e�f�1
� ! f as � ! 0 so

NX
j;k=1

cj�ckf(tj � tk) =

14



lim
�!0

NX
j;k=1

cj�ck
e�f(tj�tk)�1

� = lim
�!0

NX
j;k=1

cj�ck
e�f(tj�tk)

� � 0. Thus b) holds. a) fol-

lows from the fact that e �f(�x) = ef(x) so �f(�x)�f(x) = 2�in(x) for some integer
n(x); by continuity and the fact that f(0) = 0 we get n(x) = 0 8x so a) holds.
Conversely suppose a) and b) hold. Suppose N 2 N; tj 2 R; cj 2 C for 1 � j �

N . Let c0 = �
NX
j=1

cj ; t0 = 0. Then
NX
j=0

cj = 0 and the hypothesis implies that

NX
j;k=0

cj�ckf(tj�tk) � 0. Hence
NX

j;k=1

cj�ckf(tj�tk)+2Refc0
NX
j=1

cjf(tj)g � 0. We

can rewrite this as
NX

j;k=1

cj�ckff(tj�tk)�f(tj)�f(�tk)g � 0. Consider theN�N

matrix A = ((f(tj�tk)�f(tj)�f(�tk))). Then A = A�. Also, A is positive def-

inite. Hence there exists a unitary matrix C such that CAC�1 is a diagonal ma-
trix. Let d1; d2; : : : ; dN be the diagonal entries. Then the entries of A are given

by ajk =
NX
l=1

�clj�clkdl. Hence f(tj � tk)� f(tj)� f(�tk) =
NX
l=1

�clj�clkdl. Let S =

NX
j;k=1

cj�cke
�f(tj�tk) =

NX
j;k=1

bj�bke
�[f(tj�tk)�f(tj)�f(�tk)] where bj = cje

�f(tj).

Hence S =
NX

j;k=1

bj�bke
�

NX
l=1

�clj�clkdl

. We now write e
�

NX
l=1

�clj�clkdl

as
NY
l=1

e��clj�clkdl ,

expand the exponentials and multiply out to get a sum of terms of the type������
NX
j=1

bj(�clj)
kl

������
2

�kl
d
k1
1 d

k2
2 :::d

kN
N

k1!k2!:::kN !
(each kj varying from 0 to N). It follows that the

continuous function e�f is positive de�nite. Hence it is a characteristic function
for each � and e

1
n f is an n� th root of ef .

We now construct an importable class of i.d. distributions called stable
distributions. These distributions have applications in Mathematical Finance
and some other areas.

De�nition: a Borel probability measure � on R is called stable if ��(n) is of
the same type as � for each n where ��(n) is the convolution of � with itself n

times. Equivalently, X1 + X2 + : : : + Xn
d
= anX1 + bn; n = 1; 2; : : : for some

fang � (0;1) and some fbng � R where fXig is i.i.d. with common distribution
�.

Remark: stability here is in the sense of stability with respect to i.i.d. sums.
It is not related to any form of stability in the physical sense.
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Examples

Constant random variables are stable. Here are some non-constant examples:

a) the normal characteristic function e�t
2=2 is stable . Since (e�t

2=2)n =

e�(
p
nt)2=2 we can take an =

p
n and bn = 0.

b) the Cauchy characteristic function e�jtj is stable . Here an = n; bn = 0.

c) Let X have the N(0; 1) distribution and Y = 1
X2 if X 6= 0; 0 if X = 0.

Then Y has a stable distribution with an = n2 and bn = 0. (In particular
this shows there are positive random variables with a stable distribution). This
example requires a basic knowledge of Laplace transforms. To prove that Y is
stable, we begin by observing that the density function of Y is given by

f(x) = 1p
2�
x�3=2e�1=(2x)I(0;1)(x). By the lemma below

1Z
0

e�(a
2x2+ b2

x2
)dx =

p
�
2a e

�2ab if a; b 2 (0;1). Now

1Z
0

e�txf(x)dx = 1p
2�

1Z
0

e�txx�3=2e�1=(2x)dx = 1p
2�

1Z
0

e
� t
y2 y3e�

y2

2 2y�3dy =

q
2
�

1Z
0

e
�[ y

2

2 +
t
y2
]
dy = e�

p
2t for t > 0. If fn is the n� fold convolution of f with

itself then

1Z
0

e�txfn(x)dx = (

1Z
0

e�txf(x)dx)n = e�n
p
2t = e�

p
tn2 proving that

fn is the density function of n2X where X is a random variable with density

f . In the notations used above this means Y1 + Y2 + : : :+ Yn
d
= n2Y1 if fYng is

i.i.d. with the same distribution as Y:

Lemma 13
1Z
0

e�(a
2x2+ b2

x2
)dx =

p
�
2a e

�2ab if a; b 2 (0;1)

Proof of the lemma: let I(a; b) =

1Z
0

e�(a
2x2+ b2

x2
)dx. Put y =

p
a
bx to get

I(a; b) =
q

b
a

1Z
0

e
�(aby2+ ab

y2
)
dy

16



=
q

b
a

1Z
0

e
�ab(y2+ 1

y2
)
dy =

q
b
ae
�2ab

1Z
0

e�ab(y�
1
y )

2

dy. Let I =

1Z
0

e�c(y�
1
y )

2

dy

where c = ab. Put x = 1
y to get I =

1Z
0

e�c(x�
1
x )

2 1
x2 dx. Adding these two

equations we get 2I = I =

1Z
0

e�c(x�
1
x )

2

[1 + 1
x2 ]dx =

1Z
0

e�c(x�
1
x )

2

d(x � 1
x ).

Hence 2I =

1Z
0

e�cu
2

du = 1p
2c

1Z
0

e�v
2=2dv =

p
2�p
2c
. This gives I =

p
�

2
p
ab
and

I(a; b) =
q

b
ae
�2abI =

q
b
ae
�2ab

p
�

2
p
ab
=

p
�
2a e

�2ab.

These two examples suggest that we could look at the functions �(t) = e�cjtj
�

where c and � are positive.

Exercise

Show that e�cjtj
�

is not a characteristic function if � > 2.

Hint: consider the second derivative at 0.

Theorem 14

All stable distributions are i.d..

Proof: if X1 + X2 + : : : + Xn
d
= anX1 + bn then Y1 + Y2 + : : : + Yn

d
= X1

where Yi = 1
an
(Xi � bi

n ). Hence the distribution of the X
0
is has an n-th root for

each n.

Now let �(t) = e

1Z
�1

(eixt�1� itx
1+x2

)d�(x)

where d�(x) = 1
jxj� dx for some � 2

(1; 3). Note that
Z

x2

1+x2 d�(x) <1. Hence � is a Levy measure and � is an i.d.

characteristic function. Since � is symmetric it follows that Im(

1Z
�1

(eixt � 1 �

itx
1+x2 )d�(x)) =

1Z
�1

(sin(tx)� tx
1+x2 )d�(x) = 0. Hence �(t) = e

1Z
�1

(cos(tx)�1)d�(x)

.
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Consider

1Z
�1

(cos(tx)�1)d�(x) =
1Z

�1

(cos(tx)�1) 1
jxj� dx = �2

1Z
0

(1�cos(tx)) 1x� dx =

�2(
1Z
0

(1� cos(y)) 1y� dy) jtj
��1 by the substitution y = x jtj. Noting that

1Z
0

(1�

cos(y)) 1y� dy <1 we have proved that �(t) = e�cjtj
��1

for some c > 0. It follows

that e�cjtj
��1

is a characteristic function for some, hence for all, c > 0 provided
1 < � < 3. We have proved that e�jtj

�

is a characteristic function if 0 < � < 2.
Since (e�cjtj

�

)n = e�cjn
1=�tj� these characteristic functions are stable.

It should be noted that e�t
2=2 is a stable characteristic function and its Levy

measure is the zero measure.

The stable measures we have constructed so far are all symmetric. We call
e�jtj

�

an SS(�) characteristic function. SS(�) is read as "symmetric stable
with index alpha".

We now consider properties of general stable distributions.

Proposition 15

Let � be a non-degenerate stable probability measure. Then

a) the constants an; bn are unique for each n.

b) if � is symmetric then bn = 0 8n but the converse is false

c) if ~�(E) = �(�E) then � � ~� is also stable with the same constants an and
bn.

Proof: suppose anX1 + bn
d
= cnX1 + dn. Then X1

d
= cn

an
X1 +

dn�bn
an

. If �

is the characteristic function of X1 then j�(t)j =
����( cnan t)���. If cnan < 1 this gives

j�(t)j =
����(( cnan )kt)��� 8k 2 N and ( cnan )k ! 0 so j�(t)j = 1 8t which implies that

� is degenerate. If cnan > 1 we can replace t by tancn in j�(t)j =
����( cnan t)��� to get

j�(t)j =
����(ancn t)��� and we conclude that � is degenerate. Hence an = cn. Now

X1
d
= X1+

dn�bn
an

which implies X1
d
= X1+k

dn�bn
an

8k 2 N. Clearly this implies
bn = dn.

b) If � is symmetric then anX1+bn
d
= �anX1�bn (becauseX1+X2+: : :+Xn

is symmetric). Hence X1 +
bn
an

d
= �X1 � bn

an
. Since X1 is itself symmetric this

gives X1 +
bn
an

d
= X1 � bn

an
. This implies X1

d
= X1 + k

bn
an
for any positive integer
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k. This is impossible unless bn = 0 because X1+k
bn
an
! �1. Example c) above

shows that bn may be 0 for all n without � being symmetric.

c) is obvious.

Theorem 16
Let � be stable and non-degenerate. Then there exists a unique constant

� 2 (0;1) such that the constants an in the de�nition of stability are given by
an = n1=�.

Proof: by part c) of previous theorem we may assume that � is symmetric.
Let fXng be i.i.d. with distribution � and Sn = X1 + X2 + : : : + Xn for
n = 1; 2 : : :. Then Snk = Sn + (Xn+1 +Xn+2 + : : :+X2n) + : : :+ (X(k�1)n+1 +
X(k�1)n+2 + : : : + Xkn) (and the k terms on the right side are independent)

which gives ankX1
d
= anX1 + anX2 + : : : + anXk. Applying the de�nition of

stability again this gives ankX1
d
= anakX1. Since X1 is non-constant it follows

easily from this that ank = anak 8n; k � 1. We now complete the proof by
proving the following facts:
a) fang is increasing
b) log anlogn is independent of n 2 f2; 3; : : :g
c) an = n1=� with � 2 (0;1)

Note that c) is immediate from b). For a) we note that X1 > x implies
anX1 + amX2 > anx or anX1 � amX2 > anx. Hence PfX1 > xg � PfanX1 +
amX2 > anxg+ PfanX1 � amX2 > anxg = 2PfanX1 + amX2 > anxg. Hence
PfX1 > xg � 2Pfan+mX1 > anxg because anX1 + amX2

d
= an+mX1. [ This

follows by writing Sn+m as Sn + (Xn+1 + Xn+2 + : : : + Sn+m)]. From this
inequality we conclude that f an

an+m
: n;m � 1g is bounded. [ If this sequence is

not bounded we get PfX1 > xg = 0 8x > 0. But � is symmetric so X1 = 0
a.s.]. Now ( an

an+1
)k = ank

ak(n+1)
so f( an

an+1
)k : k � 1g is bounded implying that

an
an+1

� 1. This proves a).
If j; k � 2 and m is a positive integer there exists nm such that jnm � km <

jnm+1. [ nm = [m log k
log j ] where [t] is the greatest integer not exceeding t]. Now

we have (aj)nm � (ak)m � (aj)nm+1 so nm log aj � m log ak � (nm + 1) log aj .
But jnm � km < jnm+1 so nm log j � m log k � (nm + 1) log j. This gives
nm log aj

(nm+1) log j
� m log ak

m log k . Letting m ! 1 and noting that jnm+1 > km ! 1 we

see that nm !1 and log aj
log j �

log ak
log k . But j and k are arbitrary integers greater

than 1 so equality must hold in this last inequality. This proves b). The proof
of the theorem is complete.

De�nition: the number � in above theorem is called the index of stability.
We say � is S(�) or stable with index �.
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Theorem 17

If � is S(�) then
Z
jxjr d�(x) <1 for 0 < r < �.

Remark: it can be shown that
Z
jxjr d�(x) =1 if r � � provided 0 < � < 2.

[For � = 2

Z
jxjr d�(x) < 1 for all r > 0 and there are no stable laws with

� > 2]: This will be proved later when we discuss Banach space valued stable
random variables and their (so-called) spectral representations.

Proof: assume that � is symmetric. See the exercise below for the general
case. Let fX1; X2; : : : ; Xng be i.i.d with distribution �. Then PfmaxfjXij :
1 � i � ng > ag � 2PfjSnj > ag. [ This is well known inequality due to
Paul Levy; we include a proof here for quick reference: let Ej = fjX1j �
a; jX2j � a; : : : jXj�1j � a; jXj j > ag for 2 � j � n and E1 = fjX1j > ag. Let
T
(j)
n = �X1�X2�: : :�Xj�1+Xj�Xj+1�: : :�Xn. Then

Sn+T
(j)
n

2 = Xj . Since
E1; E2; : : : ; En are disjoint events whose union is fmaxfjXij : 1 � i � ng > ag

we get PfmaxfjXij : 1 � i � ng > ag =
nX
j=1

P (Ej) �
nX
j=1

P (Ej \ fjSnj >

ag) +
nX
j=1

P (Ej \ f
���T (j)n

��� > ag)

= 2
nX
j=1

P (Ej \ fjSnj > ag) � 2PfjSnj > ag]. Hence PfmaxfjXij : 1 �

i � ng > ag � 2Pfn1=� jX1j > ag. In other words, 1 � (PfjX1j � ag)n �
2Pfn1=� jX1j > ag. This implies that e�nPfjX1j>ag � (1 � PfjX1j > ag)n =
PnfjX1j � ag � 1 � 2Pfn1=� jX1j > ag. Changing a to tn1=� we get 1 �
e�nPfjX1j>tn1=�g � 2PfjX1j > tg 8n. We now use this this inequality to prove

that E jX1jr <1 if 0 < r < �. We have E jX1jr =
1X
n=0

Z
Iftn1=�<jX1j�t(n+1)1=�

jX1jr dP

� tr
1X
n=0

Pftn1=� < jX1j � t(n + 1)1=�g(n + 1)r=� � trPfjX1j > 0g +

tr
1X
n=1

f(n + 1)r=� � nr=�gPfjX1j > tn1=�g. Since 1 � e�nPfjX1j>tn1=�g �

2PfjX1j > tg we get nPfjX1j > tn1=�g � log 1
1�2PfjX1j>tg if t is so large

that 2PfjX1j > tg < 1; hence
1X
n=1

f(n + 1)r=� � nr=�gPfjX1j > tn1=�g �

1X
n=1

f(n+1)r=��nr=�g
n C where C = log 1

1�2PfjX1j>tg . The proof is complete
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since
1X
n=1

f(n+1)r=��nr=�g
n < 1. [ Apply Mean Value Theorem and note that

1X
n=1

(n+1)
r
�
�1

n <1]:

Exercise

Prove above result in the non-symmetric case.

Hint: ��~� is also stable with index � so
Z
jxjr (d��~�)(x) <1 for 0 < r < �.

Use Fubini�s Theorem to conclude that
Z
jxjr d�(x) <1 for 0 < r < �. [ Use

the inequalities (a + b)p � c(ap + bp) 8a; b > 0 where c = 1 if 0 < p < 1 and
c = 2p�1 if 1 � p <1].

Corollary 18

The index � of stability cannot exceed 2.

Proof: Assume that � > 2 for some symmetric stable measure �. By the

theorem � has �nite variance �2. We have Sn
d
= n1=�X1 and so Sn

�
p
n

d
= n1=�

�
p
n
X1.

By the Central Limit Theorem Sn
�
p
n
converges in distribution to the standard

normal distribution. But n
1=�

�
p
n
X1 ! 0 since � > 2.

Exercise

Prove without using above theorems that ecjtj
�

is not a characteristic func-
tion if c > 0 and � > 2.

Hint: compute the second derivative at 0 and relate it to the second moment.

Theorem 19

Any non-degenerate S(�) measure � is absolutely continuous with respect
to Lebesgue measure.

Proof: let � be the characteristic function of �. If we show that � 2 L1(R) it

would follow (by the inversion formula for characteristic functions) that � << m
(wherem is the Lebesgue measure on R). We claim that (in fact) j�(t)j = e�cjtj

�

for some c > 0. It is enough to show that j�(t)j2 = e�cjtj
�

for some c > 0. Hence
there is no loss of generality in assuming that � � 0. Since � is in�nitely divisible
it never vanishes, so �(t) > 0 8t. It follows from stability that �n(t) = �(n1=�t).
Hence g = log � satis�es the equation ng(t) = g(n1=�t). The only continuous
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real functions satisfying this equation for all n and t are functions of the type
g(t) = c jtj�. We ask the reader to supply proof. [ Hint: let h(t) = g(jtj1=�).
Then h(nt) = nh(t) and h is continuous. Prove that h(t) = c jtj]. We now have
�(t) = eg(t) = ecjtj

�

. Note that � is bounded (and not identically 1) so c < 0.
This �nishes the proof.

Remark: we have proved above that all SS(�) characteristic functions are
of the type e�cjtj

�

. Can we �nd all S(�) characteristic functions? Yes, and this
will be done a little later.

Remark: suppose � is S(�) with � < 2 (and non-degenerate). Then j�(t)j2 =
e�cjtj

�

for some c > 0. It follows easily that � is not normal. Also note that

� = 2 implies Snp
n

d
= X1 + cn 8n (for some fcng � R). We get Sn�nEX1p

n
p
V ar(X1)

d
=

1p
V ar(X1)

X1+dn for some fdng. Hence, by Central Limit Theorem we conclude
that � is normal. Thus an S(�) is normal if and only if � = 2.

De�nition: � is strictly stable if the constants bn in the de�nition of stability
are all 0.

If � > 1 then � has �nite mean. Let fXng be i.i.d. with distribution �.
Then X1 + X2 + : : : + Xn

d
= n1=�X1 + bn and nEX1 = n1=�EX1 + bn 8n. It

follows that � is strictly stable if and only if EX1 = 0. For � < 1 the notion is
a bit more complicated.

Remark: it is easy to see that a normal distribution is strictly stable (with
� = 2) if and only if the mean is 0 if and only if the distribution is symmetric.
If 1 < � < 2 and � is strictly stable then the mean is 0 but the distribution
need not be symmetric.
Theorem 20

If � is S(�), non-degenerate and � 6= 1 then there exists a unique c 2 R such
that � � �c is strictly stable with index �.

Remark: c is called the centering constant.

Proof: if X1 + X2 + : : : + Xn
d
= n1=�X1 + bn and Yj = Xj + c then Y1 +

Y2+ : : :+Yn
d
= n1=�Y1+ dn where dn = bn+nc� cn1=�. We begin by choosing

the appropriate c for n = 2. Choose c to be b2
21=��2 so that d2 = 0. Then

Y1+Y2
d
= 21=�Y1. It follows that Y1+Y2+ : : :+Y2n

d
= 21=�[Y1+Y2+ : : :+Yn]

d
=

(2n)1=�Y1 + 2
1=�dn. On the other hand Y1 + Y2 + : : :+ Y2n

d
= fn1=�Y1 + dng+

fn1=�Y2 + dng
d
= n1=�21=�Y1 + 2dn. It follows that 21=�dn = 2dn ( since � is

not degenerate). This implies dn = 0 so Y1+Y2+ : : :+Yn
d
= n1=�Y1 for each n.

Hence � � �c, the distribution of Y1 = X1 + c is strictly stable.
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Remark: what this proof shows is that if b2 = 0 then bn = 0 8n.

Remark: it is interesting to note that if � is strictly S(1) then so is � � �c
for any c: if X1 +X2 + : : : +Xn

d
= nX1 then Y1 + Y2 + : : : + Yn

d
= nY1 where

Yj = Xj+c. An example of an S(1) measure which is not strictly stable is given
later.

Exercise

Suppose the condition X1 +X2 + : : :+Xn
d
= anX1 + bn in the de�nition of

stability holds for n = 2. Can we conclude that the common distribution of X 0
is

is stable?

Hint: no! Let � =
1X

k=�1

1
2k
�2k . Show that � is a Levy measure. Let � be

i.d. with Levy measure �.

Theorem 21

Let fXng be i.i.d. random variables with distribution �. If X1 +X2
d
= aX1

and X1+X2+X3
d
= bX1 (where a and b are positive constants) then � is stable.

Proof: assume that � is not degenerate. Let � be the characteristic function
of �. Then �2(t) = �(at) and �3(t) = �(bt). We �rst show that f�(t)g2n3m =
�(anbmt) 8n;m 2 N; 8t 2 R. If this holds for a certain pair (n;m) (8t) then
�(an+1bmt) = f�(anbmt)g2 = ff�(t)g2n3mg2 = f�(t)g2n+13m so the equation
holds for the pair (n + 1;m). Similarly, the equation also holds for (n;m + 1).
Since the equation holds for n = m = 1 it holds for all n and m. Next, we show
that � never vanishes. Suppose, if possible, �(t) = 0. Then �(anbmt) = 0 8n;m.
If a < 1 (or b < 1) then we get a contradiction be letting n ! 1 (respectively
m ! 1). Now note that �(t) = f�( t

anbm )g
2n3m . Hence �( t

anbm ) = 08n;m.
This leads to a contradiction if a > 1 or b > 1. If a = b = 1 then it is easy
to see that X1 = X2 = 0 a.s.. Thus, � never vanishes. There exists a unique
continuous function g : R ! C such that g(0) = 0 and eg(t) = �(t) 8t. It
follows easily from this that g(anbmt) = 2n3mg(t) 8n;m 2 N; 8t 2 R. This
equation holds if one (or both of) n;m is (are) 0. We claim that it holds for
all integers n and m (positive, negative or 0). Suppose n � 1 and m � 1. Then
g(bmt) = 2n3mg( tan ) so 3

mg(t) = 2n3mg( tan ). Hence 3
mg(bmt) = 2n3mg( b

mt
an )

or 32mg(t) = 2n3mg( b
mt
an ) which says g(a

�nbmt) = 2�n3mg(t). The remaining
cases are similar. Thus, g(anbmt) = 2n3mg(t) 8n;m 2 Z; 8t 2 R. Now consider
fn log a + m log b : n;m 2 Zg. This is an additive subgroup of R. Hence it
is either dense of discrete. In the second case this subgroup is of the type
fn� : n 2 Zg for some � > 0. We claim that this case cannot occur. Assuming
this claim for the moment we conclude that fn log a+m log b : n;m 2 Zg is dense
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and this implies that fanbm : n;m 2 Zg is dense in (0;1). Let s > 0. There
exist sequences fnjg; fmjg such that anj bmj ! s. It follows that f2nj3mjg
converges unless g(t) = 0. Let the limit be r. Then g(st) = rg(t) provided
g(t) 6= 0. Of course, r depends on s. Let h(s) = r. Then g(st) = h(s)g(t)
except when g(t) = 0. Note that g(t) = 0; t 6= 0 implies �(t) = 1 and hence
�(anbmt) = 1 8n;m 2 Z. This implies that g � 0 and � � 1. Thus, g never
vanishes on Rnf0g and so the equation g(st) = h(s)g(t) holds for all s and t. In
particular g(s) = h(s)g(1) so h(s) = g(s)

g(1) . Finally we get the functional equation
g(st)g(1) = g(s)g(t). This gives h(st) = h(t)h(s); h(0) = 0 and h is continuous.
Since h is not identically zero this gives h(t) = tz for some complex number z for
all t > 0. [ My problem collection in real analysis contains a proof of this]. But
h(�t)h(�1) = h(t) so h(�t) = �tz where � = 1

h(�1) . [ h(�1) = 0 would imply
g(�1) = 0 a contradiction]. We have proved that �(t) = eg(1)t

z

if t � 0 and
�(t) = e�g(1)jtj

z

if t < 0. We now prove that z 2 R. Indeed, if z = a + ib then
there exists t 2 (0;1) such that g(1)tz = g(1)ea log teib log t = jg(1)j ea log t. Since
j�j � 1 we must have Refg(1)tzg � 0 so we get jg(1)j ea log t � 0 which makes
g(1) = 0 and � degenerate. Hence z is real. It is clear now that �n(t) = �(n1=zt)
for all t 2 R. Hence � is strictly stable. It remains to show that fn log a+m log b :
n;m 2 Zg cannot be of the form fn� : n 2 Zg for any � > 0. Suppose this is
the case. Then fanbm : n;m 2 Zg = fck : k 2 Zg where c = e� > 0. There
exist integers j; l such that a = cj and b = cl. Now g(anbmt) = 2n3mg(t) so
g(cjnt) = g(ant) = 2ng(t) and g(clmt) = g(bmt) = 3mg(t). Taking n = l and
m = j we see that 2ng(t) = g(cjnt) = g(cmlt) = 3mg(t). Taking t 6= 0 we get
2n = 3m which implies n = m = 0. Hence a = cj = cn = 1 and b = cl = cn = 1.
This however leads to the contradiction g(t) = 2n3mg(t) 8n;m; t.

Remark: the following more general result is also true but we will not prove
it here.

Theorem 22

Let fXng be i.i.d. with distribution �. If X1 + X2
d
= aX1 + c1 and X1 +

X2 + X3
d
= bX1 + c2 (where a and b are positive constants and c1; c2 are real

numbers) then � is stable.

In the next theorem s(t) = 1 if t � 0;�1 if t < 0.

Theorem 23 [A characterization of stability]

If � 6= 1 then � is S(�) if and only if for any a and b > 0 there exists

c > 0 such that aX + bY
d
= (a� + b�)1=�X + c where X and Y are i.i.d. with

distribution �. If � = 1 and � is strictly S(�) then aX + bY
d
= (a + b)X + c

where X and Y are i.i.d. with distribution �.. The constant c vanishes if � is
strictly stable.
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Remark: the corresponding result for non-symmetric � with � = 1 will be
stated later as an exercise. [ See the exercise immediately following Theorem
27].

Proof: the �only if� part is trivial for � = 2. Let 0 < � < 2 and � be
strictly stable. Then Sn+m = Sn+(Xn+1+Xn+2+ : : :+Xn+m) and hence (n+

m)1=�X1
d
= n1=�X1+m

1=�X2. If j; k; l;m are positive integers then (kl )
1=�X1+

( jm )
1=�X2 =

1
(lm)1=�

f(mk)1=�X1 + (jl)
1=�X2)

d
= 1

(lm)1=�
(mk+ jl)1=�X1 = (

k
l +

j
m )

1=�X1. Letting k
l ! a� and j

m ! b� we get aX1+ bX2
d
= (a�+ b�)1=�X1. If

� 6= 1 then some translate of � is strictly stable which implies that aX + bY
d
=

(a� + b�)1=�X + c for some c. We now prove the converse. Suppose � 6= 1 and,
for every a; b > 0 there exists c = c(a; b) with aX+bY d

= (a�+b�)1=�X+c. Then

X1+X2
d
= 21=�X1+ c1 for some c1. Hence X1+X2+X3

d
= 21=�X1+ c1+X3

d
=

(2 + 1)1=�X1 + c2. An induction argument shows that Sn
d
= n1=�X1 + cn for

some real number cn. the proof is now complete.

Theorem 24 [ In�nitely divisible distributions as limits of sums of indepen-
dent random variables]

a) A probability measure � is i.d. if and only if there exist random variables
fXnj : 1 � j � mn; n = 1; 2; : : :g such that fXnj : 1 � j � mng is independent

for each n; max
1�j�mn

PfjXnj j > "g ! 0 as n!1 for every " > 0 and f
mnX
j=1

Xnjg

converges in distribution to �.

b) A probability measure � is stable if and only if there exist i.i.d. random

variables Xn : n = 1; 2; : : : such that 1
an
f
nX
j=1

Xj + bng converges in distribution

to � for some sequences fang; fbng � R with an > 0 8n.

Remark: if 1
an
f
nX
j=1

Xj+bng converges in distribution to � for some sequences

fang; fbng � R with an > 0 8n where fXng is i.i.d. with distribution � we say
� is in the domain of attraction of �. Part b) of the theorem says that � has
a domain of attraction ( in the sense there is some measure � in its domain of
attraction) if and only if it is stable.

Proof: a) suppose � is i.d.. For each n there exist i.i.d. random variables
Xn1; Xn2; ::; Xnn such that the distribution of Xn1+Xn2+ :::+Xnn is �. Let �n
be the distribution of Xn1. Then max

1�j�kn
PfjXnj j > "g = �nfx : jxj > "g ! 0 as

n!1 for every " > 0 by the next lemma. Hence a) holds.
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Conversely suppose there exist random variables fXnj : 1 � j � mn; n =
1; 2; : : :g such that fXnj : 1 � j � mng is independent for each n; max

1�j�mn

PfjXnj j >

"g ! 0 as n!1 for every " > 0 and f
mnX
j=1

Xnjg converges in distribution to �.

We have
��1� EeitXnk

�� � E
��(1� eitXnk)IfjXnkj�"g

��+E ��(1� eitXnk)IfjXnkj>"g
�� �

" jtj + 2PfjXnkj > "g. Hence max
1�j�mn

��1� EeitXnk
�� ! 0 as n ! 1 uniformly

on compact sets. Let �(x) =

8<: 1 if x > 1
�1 if x < �1

x if � 1 � x � 1
. Let tnk(1 � k � mn; n =

1; 2; : : :) be chosen such that E�(Xnk + tnk) = 0. This is possible because
E�(Xnk + t) is a continuous function of t, E�(Xnk + t) ! 1 as t ! 1 and
E�(Xnk+ t)! �1 as t! �1. We claim that max

1�j�mn

PfjXnj + tnkj > "g ! 0.

From the fact that E�(Xnk + tnk) = 0 it is clear that no subsequence ftnjkjg
can tend to �1. In other words, the collection ftnkg is bounded. If t =
lim tnjkj and t 6= 0 then Xnjkj ! 0 in probability (by hypothesis) and hence
Xnjkj + tnjkj ! t in probability. Hence �(Xnjkj + tnjkj ) ! �(t) in proba-
bility. It follows that 0 = E�(Xnjkj + tnjkj ) ! �(t) implying that �(t) = 0,
hence t = 0, contradiction. It follows that maxfjtnkj : 1 � k � mng ! 0.
From this and the hypothesis we get max

1�j�mn

PfjXnj + tnkj > "g ! 0 for

each " > 0. The proof now reduces to the following: if fYnj : 1 � j �
mn; n = 1; 2; : : :g are such that fYnj : 1 � j � mng is independent for each n;

max
1�j�mn

PfjYnj j > "g ! 0 as n!1 for every " > 0; E�(Ynk) = 0 and f
mnX
j=1

Ynjg

converges in distribution to � then � is i.d.. Denoting the distribution of Ynk

by �nk we get
��1� EeitYnk �� = ����Z feitx � 1� it�(x)gd�nk���� � t2

2

Z
fjxj�1g

x2d�nk +

Z
fjxj>1g

(2 + jtj)d�nk. Hence
��1� EeitYnk �� � t2

2

Z
fjxj�1g

f�(x)g2d�nk +
Z

fjxj>1g

(2 +

jtj)f�(x)g2d�nk � ( t
2

2 +2+jtj)Ef�(Ynj)g
2. Writing Log for the principle branch

of logarithm (de�ned on Cn(�1; 0]) we see that for any � > 0; LogEeitYnk is
well de�ned for jtj � � for all k provided n is su¢ ciently large. [ This is be-
cause max

1�k�mn

��1� EeitYnk �� ! 0 as n ! 1 uniformly on compact sets]. Now��LogEe�itYnk � fEe�itYnk � 1g�� � 2
��Ee�itYnk � 1��2 for jtj � � and n su¢ -

ciently large. [ We used the inequality jLog(1 + z)� zj � 2 jzj2 for jzj < 1
2 :

jLog(1 + z)� zj =
���� z2

2 +
z3

3 � : : :
��� � jzj2

1�jzj � 2 jzj
2]. Also

mnX
k=1

��1� EeitYnk ��2 �
max

1�k�mn

��1� EeitXnk
�� mnX
k=1

��1� EeitYnk �� � max
1�k�mn

��1� EeitXnk
�� ( t22 + 2 + jtj)cn
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where cn =
mnX
j=1

Ef�(Ynj)g2. It follows that
mnX
k=1

LogEe�itYnk =

mnX
k=1

fEe�itYnk �

1g+o(cn) uniformly for jtj � �. Hence 1
2�

mnX
k=1

�Z
��

LogEeitYnkdt = 1
2�

mnX
k=1

�Z
��

fEeitYnk�

1gdt + 0(cn). We now claim that
mnX
k=1

LogEe�itYnk �
mnX
k=1

fEeitYnk � 1g ! 0

uniformly for jtj � �. Since Ee
it

mnX
k=1

Ynk

!
Z
eitxd�(x) uniformly on com-

pact sets we see that
mnY
k=1

EeitYnk !
Z
eitxd�(x) and hence

mnX
k=1

LogEeitYnk !

Log(

Z
eitxd�(x)) uniformly on compact sets. Hence 1

2�

mnX
k=1

�Z
��

LogEeitYnkdt !

1
2�

�Z
��

Log(

Z
eitxd�(x)). We have proved that 1

2�

mnX
k=1

�Z
��

fEeitYnk�1gdt+0(cn)!

1
2�

�Z
��

Log(

Z
eitxd�(x)). But the left side here is E

mnX
k=1

f sin(
�Ynk)

�Ynk
� 1g+ 0(cn). It

is easy to verify that 1 � sin x
x � af�(x)g2 for some a > 0. It follows now

that aE
mnX
k=1

f�(�Ynk)g2 + 0(cn) remains bounded as n ! 1. Since �(x)
�(�x) is

bounded we see that a0cn+0(cn) is bounded for some a0 > 0. This implies that

fcng is bounded. Since
mnX
k=1

LogEe�itYnk =

mnX
k=1

fEe�itYnk � 1g + o(cn) we now

see that
mnX
k=1

LogEe�itYnk �
mnX
k=1

fEe�itYnk � 1g ! 0 8t. Hence
Z
eitxd�(x) =

lim e

mnX
k=1

LogEe�itYnk

= lim e

mnX
k=1

fEe�itYnk�1g
= lim e

Z
feitx�1)d�n

where �n =
mnX
k=1

�nk. �nk being the distribution of Ynk. We have expressed
Z
eitxd�(x)

as the pointwise limit of a sequence of i.d. characteristic functions. [ Indeed

e

Z
feitx�1)d�

is an i.d. characteristic function for any �nite measure �]. This
completes the proof.

Proof of b): if � is stable and X1; X2; : : : are i.i.d. random variables with
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distribution � then and constants an; bn with an > 0 such that 1
an
f
nX
k=1

Xk +

bng has distribution � for every n. In particular 1an f
nX
k=1

Xk + bng converges

in distribution to �. Conversely, suppose fXng is i.i.d., an > 0; bn 2 R and

1
an
f
nX
k=1

Xk + bngconverges in distribution to �. Let Zn = 1
an
fSn + bng where

Sn =
nX
k=1

Xk. Fix a positive integer x and consider fZk; Z2k; Z3k; : : :g. We can

write Znk as 1
ank
fS(1)n + S

(2)
n + : : : + S

(k)
n g + bnk

ank
where S(j)n = X(j�1)n+1 +

X(j�1)n+2 + : : :+Xjn. Hence 1
an
(S

(1)
n + bn) +

1
an
(S

(2)
n + bn) + : : :+ 1

an
(S

(k)
n +

bn) =
ank
an
Znk +

bnk
an
� kbn. We conclude that ankan Znk +

bnk
an
� kbn converges in

distribution to ��(k) (the k� fold convolution of � with itself); also Zn converges
to � in distribution. The Convergence of Types Theorem [Theorem 11 above]

shows that
kX
j=1

Xj
d
= �kX1 + �k for some �k > 0; �k 2 R which completes the

proof.

Lemma 25

If � is i.d. and �n is the probability measure satisfying the equation �n �
�n � : : : � �n (n factors) = � then �n ! �0 weakly.

Proof of the lemma: if �n is the characteristic function of �n and � that

of � then we claim that log �n(t) =
log �(t)
n . For this note that (e

log �(t)
n )n =

�(t) = (�n(t))
n so 1

�n(t)
e
log �(t)

n is an n� th root of unity which is necessarily a
constant (by continuity). Since this function has the value 1 at 0 we must have
1

�n(t)
e
log �(t)

n = 1 8t. Now the facts that log �n(t) and
log �(t)
n are both continuous,

vanish at 0 and e
log �(t)

n = elog �n(t) � �n(t) imply that log �n(t) =
log �(t)
n 8t. It

follows now that �n(t) = e
log �(t)

n ! 1 as n!1 8t. Hence �n ! �0 weakly.

Theorem 26

If � is a symmetric S(�) probability measure with 1 < � � 2 then the
support S of � is f0g or R.

Proof: recall that aX+bY d
= (a�+b�)1=�X if fX;Y g is i.i.d with distribution

� and a; b > 0. It follows that aS+bS = (a�+b�)1=�S. Take a = b = 1 and note
that �S = S to conclude that 0 2 21=�S. Hence 0 2 S. Now taking a�+ b� = 1
we get aS � aS + bS � S. Clearly this implies that aS � S for 0 � a � 1.
Also taking a = b = 2�1=� we get 2�1=�S + 2�1=�S = S; hence 21�1=�S � S
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(: if x 2 S then 21�1=�x = 2�1=�x + 2�1=�x 2 2�1=�S + 2�1=�S = S). By
iteration we get 2n(1�1=�)S � S 8n. Together with the fact that aS � S for
0 � a � 1 this shows that aS � S 8a > 0. This implies aS = S 8a > 0.
By symmetry the same equation holds for all a 2 R. Now we can go back to
aS + bS = (a�+ b�)1=�S to conclude that S +S = S. Hence S is a subspace of
R. Of course, f0g and R are the only subspaces of R.

Remark: this proof works for stable measures on Banach spaces.

Proof: if � is a measure then � � �x is a symmetric Gaussian measure for

some x (namely x =
Z
B

yd�(y)) and we can use the there with � = 2.

Theorem 27 [Stable Characteristic Function]

Let � be S(�) with characteristic function �. Assume that 0 < � < 2.

a) If � 6= 1 then log �(t) = �c jtj� fcos ��2 + i�s(t)g + idt where c > 0 or
c < 0 according as � < 1 or � > 1, � 2 [�1; 1] and d 2 R.

b) If � = 1 then log �(t) = �c jtj f�2 + i�s(t) log jtjg+ idt where c > 0; d 2 R
and � 2 [�1; 1].

Remark: conversely above expressions are necessarily characteristic
functions of stable distributions. This result will not be proved here. See
the remark immediately after the statement of Levy�s Spectral Representation
Theorem in Volume II)

Using uniqueness of Levy - Khinchine representation it is fairly straightfor-
ward to see that the Levy measure � of an S(�) measure � satis�es the relation
n�(E) = �(n�1=�E) or n�(n1=�E) = �(E) for all Borel sets E. Note that � is

not the zero measure because � is not normal. Let h1(x) =
Z

(o;x]

y2d�(y); h2(x) =

Z
[�x;0)

y2d�(y) and h(x) = h1(x) + h2(x) =

Z
[�x;x]

y2d�(y) for x > 0. To �nd out

how these functions look like we need two lemmas.

Lemma 28

Let f : (0;1) ! [0;1) be a non-decreasing function such that h(x) �
lim
t!1

f(tx)
f(t) exists and if �nite 8x 2 (0;1).
Then, either there exists � � 0 such that h(x) = x� 8x or h(x) = 0 8x:
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Proof of the lemma: since f(txy)
f(t) = f(txy)

f(tx)
f(tx)
f(t) we have h(xy) = h(y)h(x):

Hence, if h(x) = 0 for some x then h � 0. Assume now that h(x) > 0 8x. Then
log h(ex) is an additive measurable function on R and hence there is a constant
c such that log h(ex) = cx. This gives h(x) = e� log x = x� for some real number
�. Since f is non-decreasing it follows that � � 0.

Lemma 29

Let f : (0;1) ! [0;1) be a non-decreasing function such that h(x) =
lim
n!1

�nf(anx) exists and 2 (0;1) 8x where fang and f�ng are sequences of

positive numbers such that an " 1 and
�n+1
�n

! 1. If h is also continuous then
h(x) = cx� for some c > 0 and some � � 0.

If t > a1 then there exists n such that an � t < an+1. Hence
�n+1
�n

�nf(anx)
�n+1f(an+1)

�
f(tx)
f(t) �

�n
�n+1

�n+1f(an+1x)

�nf(an)
which gives h(x)

h(1) � lim inft!1
f(tx)
f(t) � lim sup

t!1

f(tx)
f(t) �

h(x)
h(1)

proving that lim
t!1

f(tx)
f(t) = h(x)

h(1) . By Lemma 29 there exists � � 0 such that
h(x)
h(1) = x�. The proof is complete.

Now let us recall the de�nitions h1(x) =
Z

(o;x]

y2d�(y); h2(x) =

Z
[�x;0)

y2d�(y)

and h(x) = h1(x)+h2(x) =

Z
[�x;x]

y2d�(y) for x > 0. Observe that h(x) <1 8x

because
Z

fjxj�1g

y2d�(y) < 1 and �(fx : jxj > 1g) < 1. Continuity of h follows

from the fact that � is a continuous measure; indeed n�fxg = �fn�1=�xg so
1X
n=1

1
n�fxg =

1X
n=1

�fn1=�xg � �fy : jyj � xg < 1 forcing �(x) to be 0. From

the fact that n�(E) = �(n�1=�E) we get h(n1=�x) = n(
2
��1)

Z
[�x;x]

z2d�(z) =

n(
2
��1)h(x). Hence n(1�

2
� )h(n1=�x) = h(x). By Lemma 30 it follows that

h(x) = cx� for some c > 0 and some � � 0. By similar arguments the functions
h1 and h2 also have the same form, say hj(x) = cjx

�j ; j = 1; 2: The equationZ
(o;x]

y2d�(y) = c1x
�1 8x > 0 implies that x2d�(x) = c1�1x

�1�1dx or d�(x) =

c1�1x
�1�3dx on (0;1). Similarly, d�(x) = c2�2 jxj

�2�3 dx on (�1; 0) . We leave
it as an exercise to show that �1 = �2 = � unless c1 = 0 or c2 = 0. [ Just look at
the highest of the numbers �; �1; �2]. If cj = 0 then �j can be replaced by �; j =

30



1; 2. Hence we can assume that �1 = �2 = �. Then d�(x) = c1�x
��3dx on (0;1)

and d�(x) = c2� jxj��3 dx on (�1; 0). To �nd the value of � we use the relationZ
minf1; y2gd�(y) <1. This gives 0 < � < 2. Now n�(1;1) = �(n�1=�;1) so

1Z
1

nc1�x
��3dx =

1Z
n�1=�

c1�x
��3dx or nc1� 1

2�� = c1�
1
��2n

� 1
� (��2) which implies

� = 2� �. We have shown that d�(x) =
�

C1x
�1��dx on (0;1)

C2 jxj�1�� dx on (�1; 0)
(where

C1 = c1� and C2 = c2�). Let ��(x) =

8<: x if � > 1
sinx if � = 1
0 if � < 1

.

Then

1Z
�1

�����(x)� x
1+x2

��� d�(x) = C1

1Z
0

�����(x)� x
1+x2

���x�1��dx+C2 0Z
�1

�����(x)� x
1+x2

��� jxj�1�� dx
= C1

1Z
0

�����(x)� x
1+x2

���x�1��dx + C2

1Z
0

�����(x)� x
1+x2

���x�1��dx. It is clear
that both the terms on the right are �nite if 0 < � < 1. If � > 1 then
1Z
0

�����(x)� x
1+x2

���x�1��dx = 1Z
0

���x� x
1+x2

���x�1��dx = 1Z
0

x2��

1+x2 dx < 1 and,

similarly,

1Z
0

�����(x)� x
1+x2

���x�1��dx <1. if � = 1 then C1 1Z
0

���sinx� x
1+x2

���x�2dx+
C2

1Z
0

���sinx� x
1+x2

���x�2dx < 1 because jsin x�xj
x2 is bounded in (0; 1). Thus

1Z
�1

�����(x)� x
1+x2

��� d�(x) <1 in all cases. Using the Levy-Khinchine represen-

tation we can now write log �(t) = ict� t2�2=2 +
1Z

�1

feitx � 1� itx
1+x2 gd�(x) =

idt�t2�2=2+
1Z

�1

feitx�1�it��(x)gd�(x) where d = c�
1Z

�1

f x
1+x2���(x)gd�(x)

where � is the Levy measure of �. Let  (t) =

1Z
�1

feitx�1�it��(x)gd�(x). Recall

that n�(E) = �(n�1=�E). We can assert now that t�(E) = �(t�1=�E) 8t > 0.

Indeed, this is an easy consequence of the fact that d�(x) =
�

C1x
�1��dx on (0;1)

C2 jxj�1�� dx on (�1; 0)
.
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If � > 1 then  (t) =

1Z
�1

feitx � 1� it��(x)gd�(x) =
1Z

�1

feitx � 1� itxgd�(x)

=

1Z
�1

feiy�1�iygt�d�(y) = at� for t > 0, where a =

1Z
�1

feiy�1�iygd�(y).

Similarly,  (t) = bt� where b =

1Z
�1

feiy � 1gd�(y). We now evaluate a and b.

Let � < 1. Then b = C1

1Z
0

feiy�1gy�1��dx+C2
0Z

�1

feiy�1g jyj�1�� dy. To com-

pute

1Z
0

feiy � 1gy�1��dy we consider
1Z
0

feiy��y � 1gy�1��dy where � > 0. We

have

1Z
0

feiy��y�1gy�1��dy = y��
�� fe

iy��y�1gj10 �
1Z
0

y��
�� fe

iy��y(i��)gdy =

i��
�

1Z
0

y��eiy��ydy = i��
� ���1

1Z
0

x��eix=��xdx = i��
� ���1 �(1��)

(1� i
� )

1�� using the

fact that

1Z
0

eitxexxr�1dx = �(r) 1
(1�t)r [ This is the Gamma characteristic func-

tion]. Letting � # 0 we get
1Z
0

feiy � 1gy�1��dx = i
�e

�i(1��)=2�(1 � �) =

� 1
�e

��i�=2�(1 � �). Since

0Z
�1

feiy � 1g jyj�1�� dy =
1Z
0

fe�iy � 1gy�1��dy is

the complex conjugate of

1Z
0

feiy � 1gy�1��dx we get b = �C1 1�e
��i�=2�(1 �

�)� C2 1�e
pi�=2�(1� �). Hence, log �(t) = idt� t2�2=2 +  (t)

= idt� t2�2=2�C1 1� t
�e��i�=2�(1��)�C2t� 1�e

pi�=2�(1��). Recall � = 0
whenever � 6= 2. Thus,

�(t) = eidte�C1
1
� e

��i�=2�(1��)t��C2 1
� e

pi�=2�(1��)t� for t > 0 and 0 < � < 1.
This implies that �(t) = eidte�jtj

�fC1e��i�=2+C2epi�=2g 1��(1��) 8t 2 R if 0 < � <

1. From this we get �(t) = eidte�jtj
� �(1��)

� (C1+C2)fcos ��2 +is(t)
C2�C1
C2+C1

sin ��
2 g. For

� > 1 we have to evaluate

1Z
0

feiy��y � 1� iygy�1��dy. To do this we just note
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that d
dt

1Z
0

feity�1�itygy�1��dy =
1Z
0

feity�1g(iy)y�1��dy = i

1Z
0

feity�1gy��dy

and the integral here has been computed. We leave it to the reader to complete
the proof of the theorem for the case � > 1.

Now let � = 1. Recall that �(t) = eict�t
2�2=2+h(t) where h(t) =

1Z
�1

(eitx �

1 � it sinx)d�(x). Also, d�(x) = c1
1
x2 I(0;1) + c2

1
x2 I(�1;0) and � = 0 (as

seen before). Hence h(t) = c1

1Z
0

eitx�1�it sin x
x2 dx + c2

0Z
�1

eitx�1�it sin x
x2 dx. Con-

sider Re

1Z
0

eitx�1�it sin x
x2 dx =

1Z
0

cos tx�1
x2 dx = jtj

1Z
0

cos y�1
y2 dy = ��

2 jtj. Also,

Im

1Z
0

eitx�1�it sin x
x2 dx =

1Z
0

sin(tx)�t sin x
x2 dx. Let " > 0; t > 0 and consider

1Z
"

sin(tx)�t sin x
x2 dx =

1Z
"

sin(tx)
x2 dx � t

1Z
"

sin x
x2 dx = t

1Z
"t

sin(y)
y2 dy � t

1Z
"

sin x
x2 dx = t

"Z
"t

sin x
x2 dx ! t log 1t as

" ! 0. [ We used the fact that sin x
x ! as x ! 0+ and t

"Z
"t

1
xdx = �t log t].

Making obvious changes when t < 0 we get Im

1Z
0

eitx�1�it sin x
x2 dx = �t log 1

jtj .

Thus

1Z
0

eitx�1�it sin x
x2 dx = ��

2 jtj � it log
1
jtj . Now h(t) = c1f��

2 jtj � it log
1
jtjg+

c2f��
2 jtj + it log 1

jtjg. [Because

0Z
�1

eitx�1�it sin x
x2 dx is the complex conjugate

of

1Z
0

eitx�1�it sin x
x2 dx]. Thus, �(t) = eict+c1f�

�
2 jtj�it log

1
jtjg+c2f�

�
2 jtj+it log

1
jtjg.To

complete the proof we write c1f��
2 jtj � it log 1

jtjg + c2f��
2 jtj + it log 1

jtjg as
� jtj (c1 + c2)

�
2 + it(c2 � c1) log

1
jtj = � jtj f(c1 + c2)

�
2 + i(c1 � c2)s(t) log

1
jtjg

where s(t) =

8<: 1 if t > 0
�1 if t < 0
0 if t = 0

.

Writing C for c1+ c2 and � for c1�c2c1+c2
we get �(t) = eicte�Cjtjf

�
2+i�s(t) logjtjg.

Exercise: suppose � is S(1), not necessarily strictly stable. Let X;Y be i.i.d
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with distribution � and a; b > 0. Show that aX + bY
d
= (a + b)X + C�f(a +

b) log(a+ b)� a log a� b log bg where j�j � 1 and C > 0. Also show that there
exist S(1) distributions which are not strictly stable ( and no translates of which
are strictly stable).

Hint: e�cjtjf
�
2+i�s(t) logjtjg+idt is always a stable characteristic function with

� = 1 if c > 0; d 2 R and � 2 [�1; 1]. [ Take this for granted]. Take � 6=
0. In particular, �(t) = e�jtj�

2it
� logjtj (c = 2

� ; � = 1); in this case �2(t) =

�(2t)e
4i
� (log 2)t or X1 +X2

d
= 2X1 +

4
� log 2.

It can be shown that the support of a stable law is of the form [a;1) or the
form (�1; a]. If X is N(0; 1) then the support of Y = 1

X2 is [0;1). [ Indeed,
Pfa < Y < bg > 0 whenever 0 < a < b < 1]. Hence any interval of the
type [a;1) or of the type (�1; a] is the support of a stable law. [ Just look at
translates of Y and �Y ].

We state without proof a construction of stable random variables using ex-
ponential random variables.

Theorem 30

Let 0 < � < 2 and f�ig be i.i.d. random variables with E j�1j
�
< 1. Let

Tn = Y1+Y2+ : : :+Yn where fYjg is i.i.d. random variables with PfY1 � tg =�
1� e�t if t � 0
0 if t < 0

. Then the series
1X
n=1

T
�1=�
n �n converges a.s. and its sum is

a stable random variable with index �.

Stable versus normal

If X is a normal random variable then PfX > tg tends to 0 at an expo-
nential rate as t ! 1. In contrast, if X is stable with index � < 2 then
t�PfX > tg converges to a positive �nite limit. In other words, the tail prob-
ability PfX > tg tends to 0 at the same rate as t��. In view of this stable
random variables are said to have a heavy tail. Stable distributions are used
extensively in Mathematical Finance because of this heavy tail property. More
results on stable laws appear on Volume 2 where in�nitely divisible and stable
laws on Banach spaces are discussed.

Positive Stable Distributions

Theorem 31
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A probability measure � supported by [0;1) is stable if and only if
1Z
0

e�txd�(x) =

e�ct
��bt (t � 0) for some c � 0; b � 0 and 0 < � < 1.

We prove several propositions before proving above theorem.

Proposition 32

If X is a positive non-constant stable random variable then the index � of
X is less than 1.

Proof: suppose, if possible, � = 1. Let fXng and Sn be as before and note
that S2

d
= 2X1 + b for some b. If b > 0 then S2 � b and hence X1 � b

2 a.s..

But then S2
d
= 2X1 + b � 2b. This in turn implies X1 � b and hence S2 � 3b,

etc. By induction we get S2 � nb for every n, a contradiction. If b < 0 then

2X1 + b
d
= S2 so 2X1 + b � 0 and X1 � jbj

2 . This gives S2 � jbj and hence
2X1 + b

d
= S2 � jbj which implies X1 � jbj. This gives S2 � 2 jbj etc. By

induction we get S2 � n jbj for every n, a contradiction. We have proved that
b = 0 and hence S2

d
= 2X1. This implies that if N is a positive integer then

S2n
d
= 2nX1. But 1

2nS2n �
1
2n

2nX
j=1

minfXj ; Ng ! EminfX1; Ng a.s., by Strong

Law of Large Numbers. Hence X1 � EminfX1; Ng a.s. for every N . We have
proved that X1 � EX1 a.s. which implies that EX1 is �nite and since X1�EX1

is a non-negative random variable with zero mean, X1 is degenerate. We have

proved that � 6= 1. Suppose � > 1. Then Sn
d
= n1=�X1 + bn for some bn. Also

EX1 <1. Hence nEX1 = ESn = n1=�EX1 + bn and bn = (n� n1=�)EX1. If

Yn = Xn�EXn then Y1+Y2+ : : :+Yn = Sn�nEX1
d
= n1=�X1+bn�nEX1 =

(n1=�Y1 + n1=�EX1) + bn � nEX1 = n1=�Y1 � �n1=�EX1. Since fYjg is i.i.d
this implies Y1 � � 1

nn
1=�Y1 ! 0. Hence X1 � EX1 a.s. which forces X1 to be

degenerate.

Proposition 33

For every � 2 (0; 1) there exists a positive random variable with an S(�)
distribution.

We claim that if c > 0 then dn

dtn e
�ct� � 0 if n is even and � 0 if n

is odd. For this we begin with d
dte

�ct� = �c�t��1e�ct� and apply Leib-

niz rule to get dn+1

dtn+1 e
�ct� =

nX
k=0

�
n
k

�
dk

dtk
e�ct

� dn�k

dtn�k
(�c�t��1). Note that

dj

dtj (�c�t
��1) is positive or negative according as j is odd or even. A sim-

ple induction argument proves our claim. [ For instance, if we know that
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dk

dtk
e�ct

� � 0 if k is even and � 0 if k is odd provided k � n then dn+1

dtn+1 e
�ct� =

nX
k=0

�
n
k

�
dk

dtk
e�ct

� dn�k

dtn�k
(�c�t��1); suppose n is even. Then for k odd

�
n
k

�
dk

dtk
e�ct

� dn�k

dtn�k
(�c�t��1) �

0 because dk

dtk
e�ct

� � 0 and dn�k

dtn�k
(�c�t��1) � 0. For k even dk

dtk
e�ct

� � 0 and
dn�k

dtn�k
(�c�t��1) � 0 so we again have

�
n
k

�
dk

dtk
e�ct

� dn�k

dtn�k
(�c�t��1) � 0. It

follows that dn+1

dtn+1 e
�ct� � 0 8t. Similar argument works for n odd and the claim

follows by induction]. Now, by a well-known theorem on Laplace transforms (
see, e.g. XIII.4, Theorem 1 of An Introduction to Probability Theory and its
Applications by Willaim Feller, Vol. 2) we conclude that there exists a Borel

probability measure � on [0;1) with
Z

[0;1)

e�txd�(x) = e�ct
�

(t � 0). Since the

Laplace transform of the convolution of two measures in the product of their

Laplace transforms we get (with usual notations) Ee�tSn = (
Z

[0;1)

e�txd�(x))n =

e�nct
�

= Ee�t(n
1=�X1) 8t which implies Sn

d
= n1=�X1. It follows that e�ct

�

is
the Laplace transform of a positive (strictly) stable random variable.

Proposition 34

Let X be positive, strictly stable with index � and non-degnerate. Then
Ee�tX = e�ct

�

(t > 0) for some c > 0.

Proof: let f(t) = logEe�tX . Since Ee�tn
1=�X = Ee�tSn = (Ee�tX)n we

get f(n1=�t) = nf(t) 8n � 1 8t > 0. Also f is continuous. It follows that
f( n

1=�

m1=� t) =
n
mf(t) 8n;m � 1 and hence f(s1=�t) = sf(t) 8s; t > 0. Put t = 1

and replace s by s� to get f(s) = s�c where c = f(1). Thus Ee�tX = ef(t) =
ect

�

. Necessarily c > 0.

We are now ready to prove the proposition. Let � be a stable measure with
�([0;1)) = 1. [ We already know that � is absolutely continuous so �f0g = 0].
We know that � 2 (0; 1). Let � � �c0 be strictly stable. Let Yn = Xn� c0. Then
Y1+Y2 + : : : + Yn

d
= n1=�Y1 and Y1 � �c0 so Y1+Y2 + : : : + Yn � �nc0 and

n1=�Y1 � �nc0 or Y1 � �n1� 1
� c0. Letting n ! 1 we get Y1 � 0. Since Y1

is non-negative, strictly stable and non-degenerate we have Ee�tY1 = e�ct
�

for
some c > 0. Hence Ee�tX1 = e�ct

�

etc0 and the proposition is proved. [Since
Ee�tX1 < 1 we get �ct� + tc0 < 0 8t > 0 which implies c0 � 0].

Theorem 35
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Let � be stable with characteristic function with log �(t) = �c jtj� fcos ��2 +
i�s(t)g + idt and 0 < � < 1. Then �(0;1) = 1 if and only if 0 < � < 1; b � 0
and � = 1.

Proof: suppose �((0;1)) = 1. Then 0 < � < 1. We have to show
that � = 1 and b � 0. We claim that the Levy measure � is also concen-
trated on (0;1). Suppose x0 is in the support of � so that �(x0 � "; x0 +
") > 0 8" > 0. For any �nite measure � we write e(�) for the probabil-

ity measure e��(R)
1X
k=0

��(n)

n! (��(n) being the n� fold convolution of � with

itself). The characteristic function of e(�) at t is e��(R)
1X
k=0

Z
eitxd�

�(n)

n! =

e��(R)
1X
k=0

1
n! (

Z
eitx�(x))n = e��(R)e

Z
eitx�(x)

= e

Z
feitx�1g�(x)

. Note that nx0

belongs to the support of e(�1) where �1 is the restriction of � to fx :
���x > jx0j

2

���g.
[ This is because ��(n)1 (nx0 � "; nx0 + ") � f�1((x0 � "

n ; x0 +
"
n )g

n]. Re-

call that �(t) = e
ict�

Z
(eitx�1� itx

1+x2
)d�(x)

for some constant c. Let �0 be the

measure with characteristic function e

ic0t�

Z
fx:jxj� jx0j

2 g

(eitx�1� itx
1+x2

)d�(x)

where

c0 = c+

Z
fx:jxj> jx0j

2 g

x
1+x2 d�(x). Then � = �0�e(�1). [ The characteristic functions

of the two sides coincide]. If y belongs to the support of �0 then y+nx0 belongs
to the support of � and hence y + nx0 � 0 8n. Hence x0 � 0 proving that � is
supported by (0;1). Since d�(x) = C1x

�1��Ifx>0gdx + C2x
�1��Ifx<0gdx we

get C2 = 0 and � = C1�C2
C1+C2

= 1. Also Sn � nb
d
= n1=�(X1 � b) � �n1=�b

so Sn � nb � n1=�b. This implies X1 � (1 � n1=��1)b. If b < 0 then
(1� n1=��1)b!1 which leads to the contradiction X1 =1 a.s..
Now we prove the converse. Suppose 0 < � < 1; � = 1 and b � 0. We can

write � as �1 ��b with �1 strictly stable. The Levy measure of �1 is the same as
the Levy measure � of �. Since � = 1 we get C2 = 0 so �(�1; 0) = 0. The char-

acteristic function �1 of �1 is given by �1(t) = e

ib1t+C1

1Z
0

(eitx�1� itx
1+x2

)x�1��dx

.

Since �1 is strictly stable we get �1(t) = lim e

ib1t+C1

1Z
1=n

(eitx�1)x�1��dx

. If �n is
the restriction of � to ( 1n ;1) then e(�n)(�1; 0) = 0 and �1 is the weak limit of
�n. Hence �1(�1; 0) = 0. It follows that �(�1; 0) = �1(�1;�b) = 0 because
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b � 0.

Theorem 36

Let X and Y be independent strictly stable random variables with indices
� and � respectively. Suppose Y > 0 a.s.. Then XY 1=� is S(��).

Proof: if fXng is i.i.d. with the same distribution as X and fYng is i.i.d.,
independent of fXng; with the same distribution as Y then fXnY

1=�
n g is i.i.d.

with the same distribution as XY 1=�. It su¢ ces to show that
nX
j=1

XjY
1=�
j

d
=

n1=(��)XY 1=� for each n. Recall that aX1 + bX2
d
= (a� + b�)1=�X1. A simple

induction argument shows that
nX
j=1

ajXj
d
= (

nX
j=1

a�j )
1=�X1 for any n and any pos-

itive numbers a1; a2; : : : ; an. Hence, the conditional distribution of
nX
j=1

XjY
1=�
jn

given Y1; Y2; : : : ; Yn is equal to that of (
nX
j=1

Yj)
1=�X1 which is equal to the dis-

tribution of (n1=�)1=�X1Y
1=�
1 . The proof is completed by taking expectations.

Remark: an interesting special case is when � = 2. If X and Y are i.i.d.
with N(0; 1) distribution then Y

jXj has Cauchy distribution.

Remark: stable have densities but these do not have a closed form. Series
representations of the densities are available.

Remark: Marcus (Z.W., V 64, 1983, 139-156) showed that if �(t; s) =
eiar cos(3�)e�r

�

where 0 < � < 1 and t + is = rei�(r > 0; � 2 R) then � is
the characteristic function of a distribution on R2 which is not stable but its
marginals both have stable distribution with index �.

Series Representation of stable laws [due to Le Page]

Lemma 37

Let Tj ; 1 � j � N + 1 be i.i.d. exponential with parameter 1. Let S = T1 +
T2+: : :+TN+1. Then (T1S ;

T2
S ; : : : ;

TN
S ) has an absolutely continuous distribution

whose density f is given by f(x1; x2; : : : ; xN ) = n!I[0;1)(x1)I[0;1)(x2) : : : I[0;1)(xN )Ifx1+x2+:::+xN�1g.

We leave the proof as an exercise. [ Write down the joint distribution of
T1
S ;

T2
S ; : : : ;

TN
S ; S , make a suitable change of variable and use the formula

38



det

0BBBBBBB@

xN+1 0 : : x1
0 xN+1 : : x2
: : : : :
: : : : :

�xN+1 �xN+1 : : 1�
NX
j=1

xj

1CCCCCCCA
= xNN+1 a seen by the �rst N

rows to the last row:

Theorem 38

Let �1;�2; : : : be the arrival times in a Poisson process with parameter 1.
Let f"jg be symmetric f�1; 1g valued random variables independent of �0js. Let

0 < � < 2. Then
1X
j=1

"j�
�1=�
j converges a.s. to an S(�) random variable.

Proof of the theorem: Pf
1X
j=1

"j�
�1=�
j converges =�1;�2; ; ; g = I

f
1X
j=1

��2=�<1g

by the three-series-theorem (or by the fact that R is of type 2 and cotype 2).

By Strong Law of Large Numbers �j
j ! 1 a.s.. Hence

1X
j=1

��2=� < 1 a.s. and

1X
j=1

"j�
�1=�
j converges a.s.. Let fUng be i.i.d., independent of f"jg, having uni-

form distribution on (0; 1). Let Xj = "jU
�1=�
j . Then fXjg is i.i.d. and we claim

that N�1=�
NX
j=1

Xj
d
= (�N+1

N )1=�
NX
j=1

"j�
�1=�
j . Once this is proved the theorem

follows easily: 1
(Nk)1=�

NkX
j=1

Xj =
1

k1=�
f 1
N1=�

NX
j=1

Xjg + 1
k1=�

f 1
N1=�

2NX
j=N+1

Xjg +

: : :+ 1
k1=�

f 1
N1=�

NkX
j=N(k�1)+1

Xjg; since (�N+1

N )1=�
NX
j=1

"j�
�1=�
j

d!
1X
j=1

"j�
�1=�
j as

N !1 we get R d
= 1

k1=�
R1 +

1
k1=�

R2 + : : :+ 1
k1=�

Rk where fRjg is i.i.d. with

same distribution as
1X
j=1

"j�
�1=�
j . This proves that the symmetric random vari-

able
1X
j=1

"j�
�1=�
j has stable distribution with parameter �. To complete the

proof we now show that N�1=�
NX
j=1

"jU
�1=�
j

d
= (�N+1

N )1=�
NX
j=1

"j�
�1=�
j . We be-

gin with the following fact: if fU(1); U(2); : : : ; U(N)) is the order statistics from
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fU1; U2; : : : ; Ung then (U(1); U(2); : : : ; U(N)))
d
= ( �1

�N+1
; �2
�N+1

; : : : ; �N
�N+1

). This

is easy: write down the joint distribution of T1
S ;

T2
S ; : : : ;

TN
S ; S as above and

make a change of variable. [ Show that the joint density of (�1S ;
�2
S ; : : : ;

�N
S )

isN !Ij0<x1<x2<:::<xn<1g which is also the joint density of (U(1); U(2); : : : ; U(N)))].

Assuming that "0js;�
0
js and U

0
js are independent of each other we getN

�1=�
NX
j=1

Xj =

N�1=�
NX
j=1

"jU
�1=�
j

d
= N�1=�

NX
j=1

"jU
�1=�
(j)

d
= N�1=�

NX
j=1

"j(
�j

�N+1
)�1=�

= N�1=�
NX
j=1

"j�
�1=�
j �

1=�
N+1 =

NX
j=1

"j�
�1=�
j (�N+1

N )1=� which �nishes the proof.

Corollary 39

Let X have a (non-degenerate) symmetric stable distribution with index �.

Then X d
= c

1X
j=1

"j�
�1=�
j for some c > 0

Proof of corollary: EeitX = e�cjtj
�

for some c > 0 and hence the corollary
is immediate.

Exercise

Using arguments similar to the above show that
1X
j=1

�
�1=�
j converges a.s.

and has a positive stable distribution with parameter �.
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