INFINITELY DIVISIBLE DISTRIBUTIONS
Introduction

In these notes we discuss basic properties of infinitely divisible and stable
distributions on R. Infinitely divisible stochastic processes and domains of at-
traction are some important topics which will not be discussed here. They will
be discussed in a future volume. Also, infinitely divisible and stable distributions
on a Banach space will be studied in Volume 2 of these notes.

Measure theoretic preliminaries: if p and v are Borel probability mea-

sures on R we define the convolution p* v by (u*v)(E) = /,u(E — z)dv(x)

R
where F — x stands for {y —x : y € E}. Noting that I{, ,)er>:z4yer)
is a Borel measurable function on R2 for every Borel set E in R we con-

clude that //I{(w y)ER2: I_H/eE}d,u //I{(w7y)€R2 a;—i—yeE}dV( )du( )

R
which shows that wxv=vx*p. Of course, p 1/ 1s also a probability measure.
Notations: = denotes weak convergence (or convergence in distribution), >

denotes convergence in probability and X 2 Y means X and Y have the same
distribution.

Suppose p; = p and i, 1 = p, * p,n = 1,2,.... We call p,, the n— fold
convolution of p with itself. If u,, = A then u is called an n —th root of A. For a
given probability measure A and a given integer n there may be no n— th root.
[Examples will be given later]

A useful tool in studying roots of probability measures is the characteristic
function. We shall write i for the characteristic function of u. Recall that

a(t) = / et@dpu(x). We assume that the reader is familiar with basic properties
R
of characteristic functions. We reformulate the concept of n— th root as follows:
a characteristic function ¢ has an n— th root if there exists another charac-
teristic function ¢ such that ¢"(¢t) = ¢(¢) Vt € R.characteristic functions then
¥y = 1y indeed

Uniqueness: if 97 (t) = 95 (t) where v, and v, are both

characteristic functions and 1); never vanishes then :/é Eg is an n— th root

of unity for each t. By continuity it follows that ¥ E ; is an n— th root of unity

$1(0) _ Yi(t) —
which is independent of ¢. However % O 1 so o) =

A probability measure p (or its characteristic function ¢) is called infinitely
divisible (i.d.) if it has an n— th root for every positive integer n. We call a
random variable infinitely divisible if the induced measure is.



We can also formulate these concepts in terms of random variables: X isi.d.
if, for each n, there exist independent identically distributed (i.i.d.) random
variable X1 ,,, X2, ..., X, (nOt necessarily on the same probability space)

such that Xy, + Xopn + ...+ Xpp < X.
Examples:

1. Let ¢(t) = e t7"/2 where ¢ € R and ¢ > 0. ¢ is the char-
acteristic functioZn 2of normal distribution with mean ¢ and variance o2. If
b, (t) = e't/me=t"o"/(237) then ¢, is the characteristic function of normal distri-

bution with mean ¢/n and variance 0?/n. Also ¢! = ¢. Hence ¢ is i.d..

2. Uniform distribution on an interval is not i.d.. We shall show that no
non-constant bounded random variable can be i.d.! suppose X1, Xs,..., X, are

iid. and X; + Xo +...+ X, 4 X where X is a bounded random variable,
say with |X| < M as.. Then Var(X;) = 1Var(X). We claim that [X;| < X
almost surely (a.s.). In fact, 0 = P{X > M} > P{X; > %,Xg > %, ey Xy >
MYy = P{X: > M} so P{X; > 2} = 0; similarly, P{X; < =2} =0 so
|X1| < A as.. This implies that Var(X;) < I‘f—; and hence Var(X) < MTQ
If X is i.d. then this inequality holds for every n so Var(X) = 0 which is a
contradiction.

3. Let X be Cauchy random variable. The characteristic function of X is

. it(X Lt
given by Ee'X = e~ !l, Tt follows that E° " 2 BeiX = =% Hence e~

is a characteristic function whose n— th power is the characteristic function of
X.

4. Let X take the values 0 and 1 with probability pand 1 — p. Suppose
there exist ii.d. random variables Y and Z such that X < Y + Z. Then
1=P{Y+Ze{0,1})} = /P{Z € {0,1} — y}du(y) where p is the measure

induced by Y. Since the integrand takes values on [0, 1] it follows that P{Z ¢
{0,1} — y} = 1 almost everywhere (a.e.) with respect to p. In particular there
exists a real number y such that P{Z € {—y,1 — y}} = 1. Hence, we also
haveP{Y € {-y,1 —y}} = 1. Note that P{Y = —y} and P(Y = 1 — y}
must both be non-zero. (Otherwise Y, hence Z, would be constants and so
would be X, a contradiction). If w € {—y,1 —y} + {—y,1 — y} then P{X =
up =P{Y+Z =u} >0. [If u=us + ug where us,ug € {—y,1 — y} then
P{X =u} > P{Y =u,Z = us} > P{Y = w1} P{Z = ua} > 0]. Hence the
possible values of X are the points of {—y,1 —y} + {—y,1 — y} which implies
{-y,1 =y} +{-y,1 —y} = {0,1}. That there is no such real number y is
obvious.

5. Discrete random variables may be i.d.. Let X have the Poisson dis-
tribution with parameter A\. Then P{X = n} = e‘A%,n =0,1,2,... and



o0

Eeitr = Z eit"e_)‘)‘n—T = eMe" 1) Hence Poisson distribution with parameter
n=0

A/n is an n— th root of the one with parameter A.

6. Geometric distribution isi.d.: if P{X =n} = (1-p)p",n =0,1,2,...where

0 < p < 1 then Eet® = 11_;1,& We leave it as an exercise to show that if
P{X, =k} = ntk-1 pE(1 — p)" then Eei® = (Ee*Xn)". More gener-

k
ally negative Binomial distribution is i.d. by a similar argument.

7. Let X have the Gamma distribution with parameters a and b. Then X
a_—bx_a—1

has density f(z) = % where a,b > 0. Then Ee'* = m where
(1 —iat)? is defined as eblog(1—iat) T4 being the principle branch of logarithm.

It is now obvious that X is i.d.
8. Suppose f(z) = (1—|z|)*. f is the density function of a random variable
1
X. We have EetX = 2/(1—:10) cos(tz)dz = 21=5L for t # 0. It is shown below

that an i.d. characteris(t)ic function has no zeros. Since 1 —cost = 0 for t = 27 it
follows that X is not i.d.. Also 2% is a density function whose characteristic
function is f(x) which has zeros, hence 2% is not an i.d. density function;
the inversion theorem from Fourier analysis makes these points obvious].

It is now clear that it may be hard to determine if a given distribution is i.d..
For more information on infinite divisibility of specific distributions we refer the
reader to the book "Infinite Divisibility Of Probability Distributions On The
Real Line" by Steutel and van Harn.

Remark: constant random variables are i.d. and linear combinations of in-
dependent i.d. distributions are i.d. In particular, if p and v are i.d. so is
w* v. (Equivalently, product of two i.d. characteristic functions if i.d.). Proofs
of these are left to the reader. Also note that if X is i.d. with characteristic
function ¢ and {X,Y} is i.i.d. then the characteristic function of X —Y is |¢\2
Hence \q5|2 is an i.d. characteristic function whenever ¢ is.

We now describe a procedure for generating i.d. distributions from arbitrary
distributions.

Theorem 1

Let ¢ be any characteristic function and A > 0. Then e *1=¢(*) is an i.d.
characteristic function.



Proof: we have e 21=¢(1) = lim (1 — )‘(177?(”))” for each t. Note that

n—oo

1—7’\(1_55(’5)) = (1—%)+%¢(t). Hence, if ¢(t) = /eimd,u(x) then 1— 7)‘(1_755(75)) =

/eimdl/(x) where v = (1—2)8p+ 2. Since v is a probability measure it follows
that 1 — w is a characteristic function and so is (1 — W)” By the
Continuity Theorem for characteristic functions it now follows that e~ *(1=¢(*)
is a characteristic function. This characteristic function is the n— th power of
e~ n(1=2(1) which is also a characteristic function. This completes the proof.

We may ask if the characteristic functions constructed above exhaust all i.d.
ones. The answer is no. Let us show that the normal characteristic function
d(z) = e~ /2 is not of above type. If =% /2 = ¢=21=¢(*) Vg then 22/2 =
A1 —Re¢(z)). This is clearly a contradiction since the right side is bounded.

Exercise

Show that for each positive integer n there exists a characteristic function
¢ such that ¢ is not i.d. but it is the k— the power of a characteristic function
for each k < n.

Solution: ¢ = @[JE” where 1 is a characteristic function which has a zero.

One of our main jobs is to characterize i.d. characteristic functions. This
is done below in Levy - Khinchine Theorem. See also Schoenberg’s theorem
below. Before doing this we prove some basic facts about i.d. distributions.

We first recall an elementary result from complex analysis.

Lemma 2

Let f : [a,b] — C be a continuous function such that f(z) # 0 for any
z € [a,b]. Then there exists a continuous function g : [a,b] — C such that
f=e9. If ¢ € [a,b] and f(c) = e® then we can choose g such that g(c) = z.
With this condition ¢ is unique. The conclusion also holds if the domain of f is

R.

Proof: there is no loss of generality in assuming that f(a)

inf{|f(t)] :a <t < b} then 0 < p < 1. For |z —1] < I let I(2) = Z (7;)16 z—
k=1

—~

1)¥. Then [ is analytic in B(1, ), continuous on the closure of this ball and
U(z) = Z(—l)k(z -kt = 17&72) = 1. Tt follows that (e=*)z) = 0 in
k=1

B(1,3) so e '*)z is a constant. Since I(1) = 0 we get e ')z =1 or €!*) = 2
Vz € B(1,3). Since f is uniformly continuous on [a,b] there exists & > 0 such



that |f(t1) — f(t2)| < § if [t1 —ta] < d. Let {t; : 0 < j < N} be a partition of
[a,b] such that ¢ —t; < d for 0 < j < N. Define g as follows: g(t) = I(f(t))
if ¢ € [to, t1] and g(t) = g(tx) + U(FES) it th <t <ty fork=1,2,..., N — 1.

Note that if 5 < ¢ < tzy1 then ’1 — 0| sl ¢ PO ¢ L g
g(t) is well defined. Also note that g is continuous on [a, b] and e9(*) = 9(t) %

for t, <t < tpyq with e9®) = f(t) in [to,t1]. It follows easily that e9®) = f(t)
YVt € [a,b]. The fact that if ¢ € [a,b] and f(c) = €* then we can choose g
such that g(c) = z and the uniqueness of g are both obvious from the fact that
e”t = e*2 if and only if 21 — 2o = 2nmi for some integer n. [ Note that if n
depends on t € [a,b] and if ¢ — n is continuous then n is necessarily a constant].
If the domain [a,b] of f is replaced by R, we can find continuous functions
gn @ [=n,n] — C such that e9» = f on [-n,n]. Since €9 = €92+ on [—n,n| we
have gn1+1 = gn + 2k, where k, is an integer valued function on [—n,n]. By
continuity, k, is actually a constant, Replacing ¢gn+1 by gny1 — 2k, 7% we can
make sure that g,1+1 = gn On gn11 = gn + 2k, mi. An induction argument now
shows that g/,s can be defined consistently on R. This gives us a continuous
function g on R with e9 = f. Note, in particular, that g can be chosen to vanish
at 0 if f is a characteristic function with no zeros.

Theorem 3
If ¢ is an i.d. characteristic function then ¢(t) # 0 Vt € R.

Proof: for n =1,2,... let ¢,, be a characteristic function such that ¢, = ¢.

Let ¢(t) = [6(t)]* and 1, (t) = |¢,,(t)|* for n =1,2,.... Then ¢,,(t) = ¢"/"(t).
. [ 1ity(t)#0 -

Hence nlirr;own(t) =L 0ifw() =0 Recall that ¢ and %,, are characteristic

functions. Since 9 (t) # 0 for [¢| sufficiently small it follows (by continuity

theorem) that lim 1), (¢) is necessarily continuous. Hence lim ¢, (¢f) = 1 and

¥(t) # 0 Vt. This implies ¢(t) # 0 V.

Is the converse true? In other words, if ¢ is a characteristic function which
never vanishes can we conclude that ¢ is i.d.? The answer is no. In fact if
X takes the values 0,1 and —1 with probabilities %,% and % then Ee?X =
3 fe + fe = 3 + X cost which never vanishes. Of course, X is not i.d..

Combining above theorem and the lemma before it we conclude that if ¢ is
an i.d. characteristic function then there is a unique continuous function g on
R such that g(0) = 0 and e9® = ¢(t) Vt. Throughout these notes we write
log ¢ for g. g is called the distinguished logarithm of ¢. Note that if ¢ is a
non-negative i.d. (hence strictly positive) characteristic function with ¢ = ¢,
where f, is a characteristic function then ¢, = (bl/ " because ( (ﬁ;@l ) =1 so0

b, by, (1) b
I/ ST/ (D) P1/m
where ¢ is an n— th root of unity independent of . But ¢,,(0) = ¢'/"(0)

is continuous so

is an n— the root of unity. However

c
1



s0 ¢, = (;51/ ", In particular ¢1/ " is a characteristic function for each n. Also
g(t) =log ¢(t) is the natural logarithm of the positive number ¢(t).

Exercise

If f is a strictly positive characteristic function then +/f need not be a
characteristic function

Hint: W is the characteristic function of a random variable taking values
0,1 and —1 with probabilities %,é and é respectively. It is impossible to find
i.i.d. random variable X and Y such that X +Y has this distribution. (Why?).

Hence 1/@ is not a characteristic function

Theorem 4

If {¢,} is a sequence of i.d. characteristic functions and ¢,, — ¢ pointwise
where ¢ is continuous at 0 then ¢ is i.d..

Proof: the Continuity Theorem for characteristic functions shows that ¢ is
indeed a characteristic function. We claim that ¢(t) # 0 V¢. Recall that |¢|*
and |¢,,|* are characteristic functions. Let 1(t) = |¢(¢)]> and v, (t) = |¢,,()]*.
Then w}/m(t) — Y™@#) for m = 1,2,.... As observed earlier w}/m is a
characteristic function. By Continuity Theorem ¢'/™ is also a characteristic
function. It follows that v is i.d.. Hence v never vanishes implying that ¢ never
vanishes. We have proved the claim. Now we recall that for a characteristic
function ¢ with no zeros we defined g = log¢ by g(t) = l(¢(¢)) if t € [to, 1]
and g(t) = g(tx) + l(f((ttk))) if ty <t < tpqrfor k=1,2,...,N—1 where {t;}
is a suitable partition. [If p = inf |¢(t)| : |¢| < N} and § is chosen such that
|p(t) — ¢(s)| < § whenever [t —s| < § the partition {t;} is chosen such that
tit+1 —t; < d]. Now let g, = log ¢,, be defined by g, (t) = (¢, (t)) if t € [to, 1]
and ¢,(t) = gn(tr) +l(%) if tp, <t < tgyq for k =1,2,...,N —1; If
pp = infl¢,(t)| : [t| < N} and 6, is chosen such that |¢, () — ¢, (s)] < %
the partition {t;} can be chosen such that t;1; —¢; < d,: recall from basic
theory of characteristic functions that ¢,, — ¢ uniformly on [—N, N]. Ignoring
a finite number of integers n we can find p, independent of n such that 0 <
po < min{|¢,(t)],[o(t)]}. Also the condition [¢, () — ¢,(s)| < § whenever
|t — s| < § holds with § independent of n (by uniform convergence). Hence the
same partition can be used in the definitions of g and g/,s. Since [ is uniformly
continuous on the compact set {z : |z — 1| < 1} it is clear that g,, — g uniformly
on [-N,N]. If m € N then e9/™ = lime9/™ and e9"/™ is a characteristic
function. (Why?). Applying the Continuity Theorem again we conclude that
e9/™ is a characteristic function. Since (€9/™)™ = ¢ and m is arbitrary we have
proved that ¢ is i.d..




Notation: if p is an i.d. probability measure on R and n > 1, there is a
unique probability measure p,, on R such that the n—fold convolution of u,,
with itself if u. We write /™ for p,,.

We now discover more i.d. distributions using above theorem; our aim is to
characterize all i.d. characteristic functions.

Theorem 5

Let v be a finite positive Borel measure on R with v({0}) = 0 and

oo

. . 2
(e~ 1 12225 ) 1452 du ()

o(t) = eiete’™

, ) 2, 2 . .
where (e'® — 1 — 1ii2)11§ is defined as —% at £ = 0. Then ¢ is an i.d.

characteristic function.

2 1422 x2
Proof: it is enough to prove that ¢ is a characteristic function for any finite
measure v because we can get the n— th root of ¢ by replacing v by %V. We

it 1 _ _itx
first observe that ¢ ~17T+:2) is a characteristic function for any A\ > 0

and x € R. In fact, if X has Poisson distribution with parameter A then the

2 . . . 2
Remark: —% = lim (e — 1 — 42 )1tz
z—0

. . L A(eftT o it . .
characteristic function of z.X — 1;\_";2 is e (e 1+I2). From this we claim
o0
/ (eitw—l—ﬁz‘z )dT(x)
that e is a characteristic function for any finite measure 7.
Since this function is continuous it suffices show that it is a point-wise limit of
') N
characteristic functions. Now [ (e®® —1 — 22 )dr(z) = lim [ (e’ —1 —
14z N—oo
oo -N
it
T YdT(z).
b
(e —1— 5 )dr(x)
Hence it suffices to show that e« is a characteristic func-

tion for any a < b. If {z; : 0 < j < k} is the partition obtained by dividing [a, b]
k k

into n equal parts then Z(emi —1- %)I[ijlm) —z:(eim —1- 13:@2) — 0as
=1 ' =1

itx

itx
A (e )

n — oo (in fact uniformly on [a, b]) so it suffices to show that e

ite_q_ _ite
e 1 1+02} is a

is a characteristic function, where A\; = 7{z;_1, ;). Since e



characteristic function for any A > 0 and ¢ € R, the proof of the claim is com-

o0
/ (eitw_l_ 1tz )dT( )
plete. Thus e is a characteristic function for any finite mea-
o0
) it ite 14>
/ (e —1— 25 2 v () / (™ =175y T dv(@)
. 1
sure 7. Now e = lim dI*1> =7 =
oo
/ (eim*l* 1?32 )dT ()
. 2 . .
lim e where dr,(z) = I{|w‘>%}1+w—§dz/(m). Since each 7, is

a finite measure the proof of the theorem is complete.

Remark:

oo

it ite \1l+z?
(€7 1 gty ) 12 ()

B(t) = et /2gict oo is also an i.d. characteristic
function if ¢ > 0.

The converse of this is also true: any i.d. characteristic function is of this
type for some real number ¢, some ¢ > 0 and some finite measure v.

o]
(e “thﬁ)i—gzdum
Before provmg this we prove that ¢, o, v are uniquely determlned by eite=7 /2
(et —1— 13:;2 1+ dul(x) (et —1— 13:;2 1+ dug(x)
Ifeicltefcr?tQ/Qeﬁoo _ eicQtefcrth/Qeroo Vit

then ¢ = ¢o,01 = 05 and v = vy. We first take absolute values and logarithms
on both sides to get
oo

oo

—U%t2/2—|—/(cos(tx)—1) 1I§2du1(33) = —U%t2/2+/(COS(t.Z‘)—l)H;;EQdVQ(.’E).

— 00 — 00

Replacing ¢ by t/a and multiplying by a? we get —o3t?/2 + a? / (cos(t2) —

— 00
oo

1)1;§2dyl(x) :—a§t2/2+a2/(cos(f) 1)1+"” dvy(x). We claim that aZ/(cos(;‘"”)

1)1';§2d1/j(m) — 0asa — 0 for j = 1,2. This would show that o1 = o2.

Since 1 — cos(i) < t(f the we have a? ‘(cos(m) 1)1;;—2‘T2 < o222 12;”2

a2

2 2 : 2 tx
t“(1 + ). Hence, by Dominated Convergence Theorem, a (cos(%F) —

{lz|<1}



)22 dv(2) — Oasa — Ofor j = 1,2. Also a? (cos(1£)—1) 1;52 dvi(z) <

2 a
{lz[>1}
2 .
2a? Y dvj(z) < 4a*v;(R) — 0 as a — 0 for j = 1,2. We have now
{lz[>1}
oo oo
) . 2 ) .
/ (&7 -1 i) 4 () / (et7 -1 itz
proved that o1 = o5. Hence e*¢1tg-° = eic2tg-o0
o o

1+x2/ 22
— 00 —o0
11::";2 ) 1';:}2 dvs(x) Vt. | The two sides of this equation may differ by an integer
multiple of 27; however, the two sides are continuous and vanish at 0 and hence
they are equal]. Replacing ¢ be t+s, then by t—s. and adding the two equations
we get

which implies icit + /(e““’ 1 - L g (2) = st + /(e”z -1-

2icyt + / (2e"7 cos(sz) — 2 — £1%) 1';2”?2 dvy(z) = 2icot + / (2e%® cos(sz) —
—00 — 00

2 — 2tz )1“62 dvs(x) Vt,s. Replacing ¢ in the previous equation by 2t and

142 z2
subtracting the resulting equation from this equation we get
(o] [e ]

/e“z(cos(sm)fl) 1;52 dvi(z) = /e“””(cos(s:v)fl)l';#dyz(x) Vi, s. It fol-
lows that the finite measures (cos(sx)—1) 1J;§2 dvi(x) and (cos(sz)—1) 1;2“”2 dvs(x)
have the same characteristic function. Hence, these two measures are equal. It
follows that v and vy coincide on Borel subsets of {z : cos(sx) # 1} for every
s € R. Since there is no = such that cos(z) = 1 and cos(v/2x) = 1 it follows
that v1 = vo. (The reader is asked to fill in the details of this argument). It is

now obvious that ¢; = cs.

A modified version of this is the following;:

(¢ —1— 1125 ) du (a)

. . 2,2
/e”wd,u(x) = eifte= 7t /2¢g00 Vt for some real number ¢
(o)

and positive number o where v is a positive measure such that / %du(:ﬁ) <
—00
0o. This representation is called the Levy-Khinchine representation and the
unique measure v is called the Levy measure of p.
It would follow from the next theorem that every i.d. probability measure u
has a unique Levy measure v related by an equation of the type

Vit



oo

(e —1— 11222 ) du (a)

. - 2,2
etrdu(z) = ete= ' /2g o0 Vt for some real number ¢
and positive number o. Further, there is always an i.d. measure p corresponding
o0

{I:2

Tzzdv(z) < 0o, any real number ¢ and

to any positive measure v such that /

— 00
any positive number o.

Theorem 6

(e —1— 1225 ) dv (x)

Every i.d. characteristic function ¢ is of the type ¢(t) = eite=0"t*/2¢-00

vVt for some real number ¢, some positive measure v satisfying the condition
o0

/ %du(a?) < oo and positive number o.
— 00

Remark: the proof is somewhat lengthy and first time readers may read it
at a later stage.

We need two lemmas:
Lemma 7

Let ¢ be i.d. and ¢, be the characteristic function whose n—th power is
1/a

¢ (n =1,2,...). Then limsupnu,{z : |z| > a} < aa/ |[Re g(t)| dt where p,,
n— 00
0
is the measure whose characteristic function is ¢,,, a > 0 and g = log¢ and
_ 1
@ = -1y

[ Recall that ¢ is the unique continuous function such that e9 = ¢ and
9(0) = 0].

To prove the lemma we start with the standard inequality u,{z : |z| > a} <
1/a

aa/{l — Re ¢, (t)}dt. [Proposition 8.29, p. 171 of Probability by Breiman]
0

where a = m We claim that n(¢,,(t) — 1) — g(t) Vt. This follows

from the fact that e = 6, (t) Vt and the fact that n(ex — 1) — z Vz € C.
[ To see that en = ¢,, note that both sides have the same n— th power; by
continuity of g and ¢, it follows that en /¢, is a constant which must be 1

because ¢g(0) = 0 and ¢,,(0) = 1]. It follows now that lim supnu,, {z : |z| > a} <

10



1/a 1/a 1/a
limsupaan/{l — Re o, (t)}dt = —aa/ Reg(t)dt < aa/ [Reg(t)| dt. [ We
0 0

n— 00
0

have used Dominated Convergence Theorem here; note that {1 — Re¢,,(t)} =

{1-Ree’} < [ 1] < (eF — 1) where O = sup{Jg(1)| : 0 <1 < }} and

that n(e" — 1) — C as n — oo which implies that {n(e% — 1)} is bounded.

Lemma 8

limsupn / z2dp,, () < oo.

{m:]x|<1}

o0

Proof of the lemma: n{l1—Re¢,, ()} < n/ (I—cosz}du, (x) >n / (1—

- {lz|<1}

cosz}dp, (x) > np / z?dp,, (r) where 8 = inf{1=S3% : |z| < 1}. [ We inter-

{l=|<1}

pret 1=59°Z as 1 whenz = 0; note that 8 > 0]. It follows that lim sup n 22dp,, (z) <
n—oo

{a:]x|<1}
%limsupn{l —Re¢, ()} = f%Reg(t) < 00.

n—oo

Finally, we prove the Levy-Khinchine formula for ¢.

Let Ay, be defined by dA,(z) = %dun(x). We have A\, (R) = / 1’f; dp, (x)+

{z:|z|<1}

2
11z dpn, (2). By
{z:|z|>1}

14+x2 n
{a:lal<1} {z:]21<1)

Lemma 8, limsup / na” dp, () < limsup nz?dp,, (r) < oo.

IN

By Lemma 7, limsup / 1’f;dun(m) limsupnu,{z : |z| > 1} < oc.
{z:|z|>1}

Hence {\,,} is a sequence of positive finite measures with sup{\,(R):n > 1} <
o0

oo. Let v, = A:‘("R). We have ¢(t) = limn{¢, (t)—1) = lim /n(e”’t —1)dp,, (z)

oo

~ lim{ / (e — 1 — i) 1 0\, (2) + i / i (2)}

— 00

11



o0 oo

= lim{\,(R) / (et —1— lfﬁig ) 1';'2”2 dv,,(z)+it3, } where 8,, = n/ 157 A, (2).

The rest of the proof is along the following lines: we show that lim inf A, (R) >
0 and that {v,,} is tight. It will then follow that for some integers n; < ny < ...,
{An, } converges to a positive number p and {v,, } converges weakly to a proba-
irt 1 _ itz )1+I

bility measure vq. Since (e is a bounded continuous function

1422
on R it follows that 8 = lim an necessarily exists and g(t) = p/ (eimt —1—

12 )1'” dvo(z) + it3. Recall that (e®® — 1 — ’t;2)1+r equals —i when

1+x? 2
x = 0. Let v be the restriction of prg to R\{0}. Then we get

o0
(e 1 pite) 122 4y ()it~ 15 pro {0} /(e 1 it du(e) it pro{0)

p(t) = ) = g0 =g®
where dv(z) = 1';;”2 dvy(z). This finishes the proof.

Proof of p = liminf A, (R) > 0: if liminf \,,(R) = 0 then there exists nj T oo

such that A,, (R) — 0. Hence /(e”’t —-1- lfﬁig)l“” dAn, () — 0. [ The

— 00

integrand is a bounded function of = for fixed ¢]. But g(t) = lim{ / (et —
1 - lﬁiz)lgg dAn (z) + itB,,} so g(t) = limitB,, Vt. This implies that
g(t) = it for some 8 and hence ¢(t) = e™P in which case there is nothing
to prove. It remains to show that {v,} is tight. We have v, {|z| > a} =

A {lz|>a} _ 1 naz? d n#n{|x|>a}
n (R) An (R) T+z? An(R)

{lz|>a}

and hence limsup v, {|z| > a} <

1/a

%/ |[Re g(t)| dt by Lemma 7. Tightness of {v,} follows clear since g(t) — 0
0

as t — 0+.
Proposition 9

A positive measure v is the Levy measure of an i.d. measure if and only if

/min{l,xz}du(x) < 0.

Proof: we only have to show that /%dl/({ﬂ) < oo if and only if/ min{1, xQ}du(a:) <

oo. For this it suffices to observe that < min{1, 2%} and min{1, 2%} <

1+ 1+z2 1+x2

12



Notation: we write u[3, o, v] for the probability measure u whose character-
o0

) ) . 2_2
/ (e“”t—l—ilﬁr"zz Ydv(z)+itf— 12 5

istic function is e >°
Theorem 10

If plen, o, vn] — plc,o,v] then ¢, — ¢ and v, |{jz>51 = Vl{jz|>s} for every
6 > 0. It does not follow that o, — 0.

We do not prove this theorem here. A proof for i.d. laws on Banach spaces
will be given in Volume 2 of these notes.

Definition: two probability measures u and v on R are said to be of the same
type if there exist real numbers a and b with a > 0 such that u(E) = v(aFE + b)
for every Borel set E. Two random variables X and Y are of the same type if
v L ax + b for some a > 0 and b € R. This is equivalent to the fact that the
induced measures are of the same type. Two characteristic functions ¢, and ¢,
are said to be of the same type if ¢, (t) = e**¢,(at) Vt € R. Random variables
X and Y are of the same type if and only if their characteristic functions are.

Exercise

Verify that being of the same type is an equivalence relation in the class of
probability measures or the class of characteristic functions. Also verify that
the equivalence class of the standard normal distribution is precisely the class
of all normal distributions.

Theorem 11 [Convergence of Types Theorem]

Let X, % X and anXyn + by > V where ap, > 0,b, € R ¥n. If X and
Y are non-degenerate then there exist numbers a > 0 and b € R such that

ap — a,by, — band Y % aX +b.

Proof: let ¢, ¢, and 1, be the characteristic functions of X,Y and X,
respectively. Then 1, — ¢, and e®®*q), (a,t) — ¢o(t) uniformly on compact
sets. If {a,} is not bounded then some subsequence {a,, } will increase to co.

In this case, for any A > 0, sup |e”b"k Y, (@, t) — ¢2(t)| — 0. For any t € R,
[t<a /

L€ [-A,A] for k sufficiently large so e/, (t) — ¢o(=) — 0. This
np, ng

shows that e'¥nu/n: Y, (t) — 1. But v, (t) — ¢,(t) so ety /an ﬁ

provided |¢| is so small that ¢;(t) # 0. As a consequence of this lim s—’“ (=¢

k

13



say) exists and ¢, (t) = e~ for [t| sufficiently small. This makes ¢, generate

which is a contradiction. We have proved that {a, } is bounded. Let ag be a limit

point of {a, }. Arguing as above we see that sup |e*rxv, (an,t) = ¢5(t)| — 0
tl<a

and 1, (an,t) — ¢y (aot) with a,, — ag. It follows that e — d;fféz)t) for

|t| sufficiently small; this implies b = lim b, exists and e**?¢, (agt) = ¢,(t) for
|t| sufficiently small. Note that ag cannot be 0 because ¢, is non-degenerate. If
ag is another limit point of {a,} we get |¢(at)| = |¢;(ajt)| for |t] sufficiently

small. If af) < ag then ‘(jﬁl(%t)

‘qbl{(%}”t) = |¢,(t)| Vn for |t| sufficiently small and hence |¢,(¢)| = 1 for [¢|
sufficiently small. This is a contradiction. A similar argument shows that we
cannot have ag < aj. Hence {a,} has a unique limit point a and a > 0. Now

ey (at) — Py, (ant)| = |9y (at) — vy, (ant)| — 0 and € p, (ant) — do(t)
s0 €, (at) — ¢y(t) Vt. It follows that lim b,, = b exists and e*®¢; (at) = ¢, (1)

V¢ which says Y < aX + b.

= |¢,(¢)| for |¢| sufficiently small which implies

Exercise

Let ¢ bei.d. and g = log ¢. If ¢ > 0 show that e is also an i.d. characteristic
function.

Can you prove this without using the Levy-Khinchine Representation The-
orem?

Theorem 12 [Schoenberg]

Let f : R — C be continuos with f(0) = 0. Then ef is the characteristic
function of an infinitely divisible distribution p if and only if the following
conditions hold:

a) f(-a) = f(z) Va

N
b) Z ciCrf(t; —tg) > 0 whenever N € Nj¢; e R,¢c; € Cfor 1 <j <N
jk=1

s

N
and ch =0.
j=1

Proof: if ef is the characteristic function of an infinitely divisible distrib-

ution then e®f is a characteristic function for each a > 0. Hence it is positive
N

definite for each o > 0. But 65‘27—1 — fasa — 0so Z cicf(t; —tx) =
k=1

14



N N
lim 7 om Sl = dim S 6y e > 0. Thus b) holds. a) fol
jk=1 jk=1
lows from the fact that ef(=%) = e/(*) so f(—2)— f(z) = 2min(z) for some integer
n(x); by continuity and the fact that f(0) = 0 we get n(xz) = 0 Vx so a) holds.
Conversely suppose a) and b) hold. Suppose N € N,t; € R,¢; e Cfor 1 <j <

N N
N. Let ¢g = — ch,to = 0. Then ch = 0 and the hypothesis implies that

j=1 3=0
N N N
Z Cjékf(tj—tk) > 0. Hence Z Cjékf(tj—tk)+2 RG{CO chf(tj)} > 0. We
k=0 k=1 j=1
N
can rewrite this as Z cic{f(tj—te)—f(t;)—f(—tr)} > 0. Consider the N x N
k=1

matrix A = ((f(t;—tx)—f(t;)—f(—tx))). Then A = A*. Also, A is positive def-

inite. Hence there exists a unitary matrix C such that CAC~! is a diagonal ma-

trix. Let dy,ds,...,dy be the diagonal entries. Then the entries of A are given
N N
by i = Zéljélkdb Hence f(tj - tk) — f(tj) - f(—tk) = Zéljélkdb Let S =
=1 =1
N N
Z ngkeaf(tj*tk) = Z bjgkea[f(tj*tk)*f(tj)*f(*tk)] where b; = Cjeaf(tj).
Ji:k=1 Ji:k=1
N N
N 3 (Xzéljalkdl aZElelkdl N o
Hence S = Z bjbre =1 . We now write e !=! as Heacljclkdl,
Jik=1 =1

expand the exponentials and multiply out to get a sum of terms of the type
2

al & K drldh? | dhN .
Z bj(ey)™ | ™ G2 (each kj varying from 0 to V). It follows that the
j=1

continuous function e/ is positive definite. Hence it is a characteristic function
1.
for each a and e=7 is an n — th root of e/.

We now construct an importable class of i.d. distributions called stable
distributions. These distributions have applications in Mathematical Finance
and some other areas.

Definition: a Borel probability measure x on R is called stable if p*(™ is of
the same type as u for each n where p*(™ is the convolution of p with itself n
times. Equivalently, X; + Xo + ... + X, 4 anX1 + b,,n = 1,2,... for some
{an} C (0,00) and some {b,,} C R where {X,} isii.d. with common distribution
Lb.

Remark: stability here is in the sense of stability with respect to i.i.d. sums.
It is not related to any form of stability in the physical sense.

15



Examples
Constant random variables are stable. Here are some non-constant examples:

a) the normal characteristic function e~¥/2 is stable . Since (e’tg/z)"

e~ (V)*/2 e can take a,, = V1 and b, =
b) the Cauchy characteristic function eIl is stable . Here a,, = n,b, = 0.

c) Let X have the N(0,1) distribution and ¥ = <5 if X # 0,0 if X = 0.
Then Y has a stable distribution with a,, = n? and b, = 0. (In particular
this shows there are positive random variables with a stable distribution). This
example requires a basic knowledge of Laplace transforms. To prove that Y is
stable, we begin by observing that the density function of Y is given by

2
f(z) = \/%96_3/26_1/(2””)1(0,00) (x). By the lemma below /ef(“%%ra%)dx =
0
YT e=2b if g b € (0,00). Now

2a
t y2
/e_mf(x)dx 2\/%7/6_“’3:_3/26_1/(2”’%90 = \/%/e_yizy?’e_TQy_gdy =
0 0 0

\/>/ %+T]dy =eV2fort>0. If fn is the n— fold convolution of f with

itself then /e‘t“'fn(x)d;c = (/e_txf(x)dm)” = e V2 — ¢=Vin® bioving that
0 0

fn is the density function of n?X where X is a random variable with density

/- In the notations used above this means Y1 + Y+ ...+ Y, 4 n?Yy if {Y,} is
i.i.d. with the same distribution as Y.

Logmma 13

2
/67(a2z2+37)dx = *2/;7 —2ab if q,b € (0,00)
0

oo

Proof of the lemma: let I(a,b) /e a?e?+ Q)d:n Put 4 \Fx o
0
o) = \fi [
0

16



- \/g/efab(yzﬂ%)dy = \/ge—%b/e*ab@*%fdy. Let I = /e’“(y’%ydy
0 0

1

where ¢ = ab. Put z = % to get I = /e’c($*5)2m—12dac. Adding these two

0
equations we get 2 = [ = /efc("”’%) 1+ /e e(@=3) d(z — 2).
0 0
Hence 21 = /6*5“2du = \/%/eﬂ’z/?dv = % This gives [ = 2{% and

0 0
I(a,b) = \/ge—mzbj _ \/567211172\/\/?7 _ ﬁe*%b

These two examples suggest that we could look at the functions ¢(t) = e
where ¢ and « are positive.

—clt|®

Exercise

Show that e~“*I is not a characteristic function if o > 2.
Hint: consider the second derivative at 0.

Theorem 14

All stable distributions are i.d..

Proof: if X; + Xo 4+ ...+ X, £ 4, X1 4+ b, then Y + Yo + ...+ Y, £ X,
where Y; = ﬁ(Xl ﬁ) Hence the distribution of the X/s has an n-th root for
each n.

oo

(eizt —1— ﬂfﬁ )dv(x)

Now let ¢(t) = e where dv(x) = ‘Illa dz for some « €

dv(z) < co. Hence v is a Levy measure and ¢ is an i.d.

(1,3). Note that /1+ 3

oo

characteristic function. Since v is symmetric it follows that Im( / (et —1 —

—0o0
oo

- /(cos(tm)fl)dv(l’)
Ty )dv(z)) = /(Sin(ta?) — 1i57)dv(z) = 0. Hence ¢(t) = e>° '

— 0o

17



oo o0

Consider /(cos(tx)—l)du(x) = /(cos(tx)—l) |m1‘adx = —2/(1—cos(tx))x%dx =

— 00 — 00

—2(/(1 — cos(y))y%dy) |t|*~" by the substitution y = 2 |¢|. Noting that /(1 —
0 0

cos(y))y%dy < 00 we have proved that ¢(t) = e~/ for some ¢ > 0. It follows

that e~<lt""" is a characteristic function for some, hence for all, ¢ > 0 provided
1 < o < 3. We have proved that e~1!l” is a characteristic function if 0 < o < 2.

3 —c[t|]*\n —c|n1/o‘t|a c s .
Since (e " =e these characteristic functions are stable.

It should be noted that e~t"/2 is a stable characteristic function and its Levy
measure is the zero measure.

The stable measures we have constructed so far are all symmetric. We call
e 11" an SS(a) characteristic function. SS(a) is read as "symmetric stable
with index alpha".

We now consider properties of general stable distributions.
Proposition 15

Let p be a non-degenerate stable probability measure. Then
a) the constants a,, b, are unique for each n.

b) if p is symmetric then b, = 0 ¥n but the converse is false

c) if i(E) = u(—FE) then p=* [ is also stable with the same constants a,, and
by,.

Proof: suppose a, X1 + b, 4 ¢ X1+ d,,. Then X, 4 g—:Xl + %. If ¢
is the characteristic function of X then |¢(t)| = )qﬁ(g—zt)’ If 2= <1 this gives
[6(8)] = [o((2)41)| ¥k € N and (
¢ is degenerate. If £ > 1 we can replace ¢ by ¢ in [@(t)] = ‘gb(fl—zt)
6(8)] = |o(2t)

X1 £ X+ %2=ta which implies X; £ X; + k%= vk € N. Clearly this implies
by = d,,. ’

)¥ — 0 so |¢(t)| = 1 Vt which implies that

Cn
an

to get

and we conclude that ¢ is degenerate. Hence a, = ¢,. Now

b) If 1 is symmetric then a, X1+b, 4 —a,X1—by, (because X1+ Xo+...+X,
is symmetric). Hence X7 + Z— 4 X7 — Z— Since X is itself symmetric this

gives X1 + Z—Z 4 X1 — Z—Z. This implies X3 4 Xq+ kZ—Z for any positive integer

18



k. This is impossible unless b,, = 0 because X; —&—k% — +o00. Example c) above
shows that b,, may be 0 for all n without u being symmetric.

c) is obvious.

Theorem 16
Let p be stable and non-degenerate. Then there exists a unique constant
a € (0,00) such that the constants a,, in the definition of stability are given by
[ e
an = nt/e.

Proof: by part ¢) of previous theorem we may assume that p is symmetric.
Let {X,} be iid. with distribution p and S, = X; + Xo + ... + X, for
n=1,2.... Then Spx = S + (Xpnp1+ Xpnpo +... 4+ Xon) +. .+ (Xp—1)ng1 +
Xk—1ynt2 + ... + Xgn) (and the k terms on the right side are independent)
which gives anr X7 4 anX1 + ap,Xo+ ... 4+ apXg. Applying the definition of
stability again this gives a.,i X1 4 anarX1. Since X7 is non-constant it follows
easily from this that a,r = anar Vn,k > 1. We now complete the proof by
proving the following facts:

a) {ay,} is increasing

b) li’fﬁ is independent of n € {2,3,...}

¢) ap = n'/* with a € (0, 00)

Note that c) is immediate from b). For a) we note that X; > x implies
an X1 + amXs > apx or a, X1 — apXa > apx. Hence P{X; > 2} < P{a, X1 +
amXa > apx} + Plan X1 — anXo > anz} = 2P{a, X1 + an X2 > ayx}. Hence
P{X; > a} < 2P{apt+mX1 > apx} because a, X1 + amXo 4 ant+mX1. | This
follows by writing Spi1m as S + (Xnt1 + Xng2 + .-« + Sptm)]. From this

inequality we conclude that {a“: :n,m > 1} is bounded. [ If this sequence is

not bounded we get P{X; > z} = 0 V& > 0. But g is symmetric so X; = 0

a.s.]. Now (2= VP = —uk g0 {(-22-)F : k > 1} is bounded implying that
n+1 Gk (n+1) An+41

42 < 1. This proves a).

an
If j,k > 2 and m is a positive integer there exists n,, such that j"m < k"™ <

gt [ ng, = ["i;gg;k] where [t] is the greatest integer not exceeding ¢]. Now

we have (a;)" < (ar)™ < (a;)"*! s0 ny, loga; < mlogay < (ny, + 1)loga;.
But jmm < k™ < jmmtl o n,,logj < mlogk < (n, + 1)logj. This gives
nm loga; mlogay
(nm+1)logj — mlogk *
see that n,, — oo and

Letting m — oo and noting that j”»*1 > k™ — oo we
loga; - logay

logg — logk *
than 1 so equality must hold in this last inequality. This proves b). The proof

of the theorem is complete.

But j and k are arbitrary integers greater

Definition: the number « in above theorem is called the index of stability.
We say p is S(«) or stable with index .
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Theorem 17

If 1 is S(«) then / |z|" du(z) < oo for 0 < r < a.

Remark: it can be shown that / |z|" du(z) = oo if r > a provided 0 < a < 2.

[For a = 2 /|x|T du(x) < oo for all r > 0 and there are no stable laws with

a > 2]. This will be proved later when we discuss Banach space valued stable
random variables and their (so-called) spectral representations.

Proof: assume that p is symmetric. See the exercise below for the general
case. Let {X;,Xs,...,X,} be i.i.d with distribution p. Then P{max{|X;| :
1 <i<n} >a} <2P{|S,| > a}. [ This is well known inequality due to
Paul Levy; we include a proof here for quick reference: let E; = {|X;| <
a,|Xs| < a,...|X;-1| < a,|Xj] >a} for 2 <j<nand Ey = {|X1| > a}. Let
T»,(Lj) = 7X17X27. e j_1+Xijj+1f. . .7Xn. Then S”JF#T’(J) = Xj. Since
Ey,Es,. .., E, are disjoint events whose union is {max{|X;|: 1 < i <n} > a}

we get P{max{|X;| : 1 <i < n} >a} = Y P(E;) < Y P(E;n{[S,] >

j=1 j=1
a}) + 3 P(E; n{|T| > a})
j=1
= ZZP(Ej NA{|Sn| > a}) < 2P{|S,| > a}]. Hence P{max{|X;| : 1 <
j=1

i < n} > a} <2P{nY*|X;| > a}. In other words, 1 — (P{|X;| < a})" <
2P{n'/*|X;| > a}. This implies that e~"P{IX1l>e} > (1 — P{|X;| > a})" =
P{|X,| < a} > 1 —2P{n"*|X;| > a}. Changing a to tn'/* we get 1 —
e~nP{X >t} < 2P{|X1| > t} ¥n. We now use this this inequality to prove
that E |X1|r <o0if 0 <r < a. We have E |X1‘r = Z /I{tnl/a<|X1|§t(n+1)l/a

n=0

| X1|" dP
(o)
< Yy P{tmte < |Xy| < tn+ DYl + 1) < TP{Xy| > 0} +
n=0
tT'Z{(n + 1)/ — /Y P{X;| > tn'/*}. Since 1 — e nP{Xi >t} <
n=1
2P{|X1| > t} we get nP{|X1| > tn'/*} < logm if ¢ is so large
that 2P{|X1| > ¢} < 1; hence Z{(n + 1)/ — pr/YP{X,| > tnt/o} <

n=1

SO o e € = 108 T3S

B The proof is complete

n=1
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since Z w < o0. [ Apply Mean Value Theorem and note that

n=1
0o .
Z 7(”“3“ < o0

n=1

Exercise

Prove above result in the non-symmetric case.

Hint: pxfi is also stable with index a so / |z|" (duxp)(z) < oo for 0 < r < a.

Use Fubini’s Theorem to conclude that / |z|" du(z) < oo for 0 < r < a. [ Use

the inequalities (a + b)? < c(aP + bP) Va,b > 0 where c = 1if 0 < p < 1 and
c=2r"1if 1 <p< oo

Corollary 18
The index « of stability cannot exceed 2.

Proof: Assume that « > 2 for some symmetric stable measure p. By the

theorem p has finite variance o2. We have S, 4 n'/*X; and so af% 4 Zl/: 1.
By the Central Limit Theorem —2= converges in distribution to the standard
ovn
normal distribution. But ﬂX1 — 0 since a > 2.
ovn

Exercise

cft]*

Prove without using above theorems that e is not a characteristic func-

tion if ¢ > 0 and a > 2.
Hint: compute the second derivative at 0 and relate it to the second moment.
Theorem 19

Any non-degenerate S(«) measure p is absolutely continuous with respect
to Lebesgue measure.

Proof: let ¢ be the characteristic function of p. If we show that ¢ € L}(R) it

would follow (by the inversion formula for characteristic functions) that @ << m
(where m is the Lebesgue measure on R). We claim that (in fact) |¢(t)| = e~°I*"
for some ¢ > 0. It is enough to show that |¢(t)|* = e~I*l” for some ¢ > 0. Hence
there is no loss of generality in assuming that ¢ > 0. Since ¢ is infinitely divisible
it never vanishes, so ¢(t) > 0 Vt. It follows from stability that ¢"(t) = ¢(n'/t).
Hence g = log ¢ satisfies the equation ng(t) = g(n'/®t). The only continuous
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real functions satisfying this equation for all n and ¢ are functions of the type
g(t) = c|t|”. We ask the reader to supply proof. [ Hint: let h(t) = g(|t|1/a).
Then h(nt) = nh(t) and h is continuous. Prove that h(t) = c|t|]. We now have
B(t) = e9® = ¢ltl” | Note that ¢ is bounded (and not identically 1) so ¢ < 0.
This finishes the proof.

Remark: we have proved above that all SS(«) characteristic functions are
of the type e~°/*I". Can we find all S(«) characteristic functions? Yes, and this
will be done a little later.

Remark: suppose y is S(c) with a < 2 (and non-degenerate). Then |¢(t)|” =
e~ltI” for some ¢ > 0. It follows easily that p is not normal. Also note that

a = 2 implies 2z L X, +ecnVn (for some {c,} C R). We get —2n-nEXs 4

NG Vny/Var(X1) -

- X1 +d, for some {d,,}. Hence, by Central Limit Theorem we conclude

v Var(X1)

that p is normal. Thus an S(«) is normal if and only if o = 2.

Definition: u is strictly stable if the constants b, in the definition of stability
are all 0.

If & > 1 then g has finite mean. Let {X,} be i.i.d. with distribution pu.
Then X; + Xo + ... + X,y £ n1/oX, + b, and nEX; = n'/*EX, + b, Vn. Tt
follows that p is strictly stable if and only if £X; = 0. For a < 1 the notion is
a bit more complicated.

Remark: it is easy to see that a normal distribution is strictly stable (with
a = 2) if and only if the mean is 0 if and only if the distribution is symmetric.
If 1 < a < 2 and pu is strictly stable then the mean is 0 but the distribution
need not be symmetric.

Theorem 20

If 14 is S(«), non-degenerate and a # 1 then there exists a unique ¢ € R such
that u * J. is strictly stable with index a.

Remark: c is called the centering constant.
Proof: if X; + Xy + ...+ X, £ /X, + b, and Y¥; = X, + ¢ then Y; +

Yo+ ... +Y, L nl/ey, +d, where d,, = b, +nc—cnl/*. We begin by choosing
the appropriate ¢ for n = 2. Choose ¢ to be 21/b+72 so that dy = 0. Then
Yi+Ys L 2V/0Y, . Tt follows that Y; +Ya + ...+ Yo, < 210V, + Yo +... +Y,] <
(2n)Y/Y; + 21/9d,,. On the other hand Y; + Vs + ... + Ya,, < {n}/°Y; +d,,} +
{(nV/oYy + d,} £ nl/a2l/ay; 4+ 2d,. Tt follows that 2/%d, = 2d, ( since y is
not degenerate). This impliesd, =0so Y1 +Ya+...+Y, 4 nt/®Y; for each n.
Hence p * 0., the distribution of Y7 = X; + c is strictly stable.
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Remark: what this proof shows is that if bo = 0 then b, = 0 Vn.

Remark: it is interesting to note that if p is strictly S(1) then so is p * d,.

for any ¢: if X1+ Xo+ ...+ X, anl then Y1+ Yo +...4+Y, inYl where
Y; = X;+c. An example of an S(1) measure which is not strictly stable is given
later.

Exercise

Suppose the condition X7 + Xo + ...+ X, 4 an X1 + b, in the definition of
stability holds for n = 2. Can we conclude that the common distribution of X/s
is stable?

o0
Hint: no! Let v = Z %5%. Show that v is a Levy measure. Let u be

k=—o0
i.d. with Levy measure v.

Theorem 21

Let {X,,} be i.i.d. random variables with distribution p. If X; + X5 4 aXi
and X7+ X9+ X3 Lpx 1 (where a and b are positive constants) then p is stable.

Proof: assume that p is not degenerate. Let ¢ be the characteristic function
of pu. Then ¢*(t) = ¢(at) and ¢*(t) = ¢(bt). We first show that {4(t)}>"3" =
o(a™b™t) Yn,m € N, Vt € R. If this holds for a certain pair (n,m) (Vt) then
$(a" ™) = {p(a"b™ )} = {{B()}""}2 = {$(1)}*""%" so the equation
holds for the pair (n + 1,m). Similarly, the equation also holds for (n,m + 1).
Since the equation holds for n = m =1 it holds for all n and m. Next, we show
that ¢ never vanishes. Suppose, if possible, ¢(¢) = 0. Then ¢(a™b™t) = 0 Vn, m.
If a <1 (or b < 1) then we get a contradiction be letting n — oo (respectively
m — o0). Now note that ¢(t) = {(-5=)}>"%". Hence ¢(-k=) = 0Vn,m.
This leads to a contradiction if @ > 1 or b > 1. If a = b = 1 then it is easy
to see that X; = X5 = 0 a.s.. Thus, ¢ never vanishes. There exists a unique
continuous function g : R — C such that g(0) = 0 and e9®) = ¢(t) Vt. It
follows easily from this that g(a"b™t) = 2"3™g(¢) Yn,m € N, ¥Vt € R. This
equation holds if one (or both of) n,m is (are) 0. We claim that it holds for
all integers n and m (positive, negative or 0). Suppose n > 1 and m > 1. Then
g(b™t) = 2"3mg(L) so 3mg(t) = 2"3™g(-L). Hence 3" g(b™t) = 2”3mg(b;f)
or 32mg(t) = 2"3”@(%) which says g(a="b™t) = 27"3™g(t). The remaining
cases are similar. Thus, g(a™b™t) = 2"3™g(t) Vn,m € Z, Vt € R. Now consider
{nloga + mlogb : n,m € Z}. This is an additive subgroup of R. Hence it
is either dense of discrete. In the second case this subgroup is of the type
{nB :n € Z} for some S > 0. We claim that this case cannot occur. Assuming

this claim for the moment we conclude that {nloga+mlogb : n,m € Z} is dense
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and this implies that {a"b™ : n,m € Z} is dense in (0,00). Let s > 0. There
exist sequences {n;},{m;} such that a™b™ — s. It follows that {273}
converges unless g(t) = 0. Let the limit be r. Then g(st) = rg(t) provided
g(t) # 0. Of course, r depends on s. Let h(s) = r. Then g(st) = h(s)g(t)
except when g(t) = 0. Note that g(¢t) = 0,t # 0 implies ¢(¢) = 1 and hence
@(a™b™t) = 1 ¥Yn,m € Z. This implies that ¢ = 0 and ¢ = 1. Thus, g never
vanishes on R\{0} and so the equation g(st) = h(s)g(t) holds for all s and ¢. In

particular g(s) = h(s)g(1) so h(s) = 38 Finally we get the functional equation
g(st)g(1) = g(s)g(t). This gives h(st) = h(t)h(s), h(0) = 0 and h is continuous.
Since h is not identically zero this gives h(t) = t* for some complex number z for
all ¢ > 0. [ My problem collection in real analysis contains a proof of this]. But
h(=t)h(—=1) = h(t) so h(—t) = [t* where § = ﬁ [ A(—1) = 0 would imply
g(—1) = 0 a contradiction]. We have proved that ¢(t) = et if ¢ > 0 and
B(t) = ePIWI" if t < 0. We now prove that z € R. Indeed, if z = a + ib then
there exists ¢ € (0, 00) such that g(1)t* = g(1)e?!o8teitlogt = |g(1)| 18t Since
|#| < 1 we must have Re{g(1)t*} < 0 so we get |g(1)] e?!°8* < 0 which makes
g(1) = 0 and ¢ degenerate. Hence z is real. Tt is clear now that ¢" (t) = ¢(n'/*t)
for allt € R. Hence ¢ is strictly stable. It remains to show that {nloga+mlogb :
n,m € Z} cannot be of the form {nS : n € Z} for any 8 > 0. Suppose this is
the case. Then {a™b™ : n,m € Z} = {c* : k € Z} where ¢ = ¢® > 0. There
exist integers j,l such that a = ¢/ and b = ¢. Now g(a™b™t) = 2"3™g(t) so
g(c?™t) = g(a™t) = 2"g(t) and g(c!™t) = g(b™t) = 3™g(t). Taking n = [ and
m = j we see that 2"g(t) = g(c’™t) = g(c™t) = 3™g(t). Taking t # 0 we get
2" = 3™ which implies n =m =0. Hencea=c¢ =c® =land b=c =" = 1.
This however leads to the contradiction g(t) = 2"3™g(t) Vn,m,t.

Remark: the following more general result is also true but we will not prove
it here.

Theorem 22

Let {X,} be i.i.d. with distribution p. If X3 + X5 4 aXq1+ ¢ and Xy +

X9+ X3 4 bX1 + c2 (where a and b are positive constants and c1, co are real
numbers) then p is stable.

In the next theorem s(t) =1ift > 0,—1if ¢ < 0.

Theorem 23 [A characterization of stability]

If « # 1 then p is S(«) if and only if for any a and b > 0 there exists
¢ > 0 such that aX +bY 2 (a® +b*)/*X + ¢ where X and Y are i.i.d. with

distribution p. If @ = 1 and p is strictly S(«) then aX + bY 4 (a+b)X +c
where X and Y are i.i.d. with distribution x.. The constant ¢ vanishes if y is
strictly stable.
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Remark: the corresponding result for non-symmetric p with a = 1 will be

stated later as an exercise. | See the exercise immediately following Theorem
27).

Proof: the ’only if’ part is trivial for « = 2. Let 0 < o < 2 and p be
strictly stable. Then S, 1 = Sn+ (Xpnt1 + Xng2+. ..+ Xntm) and hence (n+

m)/ X, L pllax, ymi/aX,. If j. k,1,m are positive integers then (¥)1/*X; +

; . d .
(#)1/QX2 = (l,mﬁl/a {(mk)l/axl + (]l)l/aXQ) = (hn:;l/a (mk +]l)1/aX1 = (% +
%)1/04)(1. Letting % — a® and # — b* we get a X, +0Xo 4 (a"‘—i—bo‘)l/o‘Xl. If

«a # 1 then some translate of p is strictly stable which implies that a X + bY <
(a® 4 b)Y/ X + ¢ for some c¢. We now prove the converse. Suppose o # 1 and,

for every a,b > 0 there exists ¢ = ¢(a, b) with a X +bY 4 (a®+b)"/*X +¢. Then
X1+ Xo 4 ot/a x| + ¢, for some ¢;. Hence X; + Xo+ X3 4 2l/ax +e+ X5 4

2+ 1)Y2 X, + ¢5. An induction argument shows that S, 4 n'/*X, + ¢, for
g
some real number c¢,. the proof is now complete.

Theorem 24 [ Infinitely divisible distributions as limits of sums of indepen-
dent random variables]

a) A probability measure p is i.d. if and only if there exist random variables
{Xn; :1<j<myp,n=1,2,...} such that {X,; : 1 <j <m,} is independent

Mn
for each n, max P{|X,;| >¢e} — 0asn — oo for every ¢ > 0 and {Z Xnjt
1<j<m, —
j=
converges in distribution to p.

b) A probability measure u is stable if and only if there exist i.i.d. random

n
variables X,, : n =1,2,... such that (%{Z X, + by} converges in distribution
j=1
to p for some sequences {a,}, {b,} C R with a,, > 0 Vn.

n
Remark: if i{z X,;+b,} converges in distribution to p for some sequences
j=1
{an}, {bn} C R with a,, > 0 Vn where {X,,} is i.i.d. with distribution v we say
v is in the domain of attraction of u. Part b) of the theorem says that p has
a domain of attraction ( in the sense there is some measure v in its domain of
attraction) if and only if it is stable.

Proof: a) suppose p is i.d.. For each n there exist i.i.d. random variables
Xn1, Xn2, .., Xppn such that the distribution of X1 + Xpo+...+Xpp is p. Let p,,
be the distribution of X,,;. Then | max P{|X,;| >¢e} =p,{z:|z| >e} = 0as

J>SRn

n — oo for every € > 0 by the next lemma. Hence a) holds.
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Conversely suppose there exist random variables {X,; : 1 < j < my,n =
2,...} such that {X,,; : 1 <j < m,}isindependent for each n, | max P{|X,;| >
Lz
- <is
e} — 0asn — oo for every € > 0 and {Z Xn;} converges in distribution to p.
j=1
We have ‘1 — EettXnk < E| 1 - €ti'”‘)I{|X k|<€}‘+E‘ 1 - eltX”k)I{‘X"k|>€}’ <

elt] +2P{|X,| > }. Hence | Inax |1 — Ee'*Xnk| — 0 as n — oo uniformly
<j<mg

lifx>1
on compact sets. Let 7(x) = —lifz< -1 . Let tyx(1 <k <mp,n=
zif —1<z<1
1,2,...) be chosen such that E7(X,r + t,x) = 0. This is possible because
E7(X,, + t) is a continuous function of ¢, E7(X,r +t) — 1 as t — oo and
Er(Xnr+t) » —last — —oo. We claim that max P{|X,; + tnx| > e} — 0.

1<j<mp
From the fact that E7(X,x + tnx) = 0 it is clear that no subsequence {tn]. k].}
can tend to +oo. In other words, the collection {t,x} is bounded. If ¢t =
lim¢,;, and t # 0 then X, ,x, — 0 in probability (by hypothesis) and hence
Xk, + tn;k; — t in probability. Hence 7(Xy,x; + tn;x;) — 7(t) in proba-
bility. It follows that 0 = E7(Xpx; + tn;x,) — 7(t) implying that 7(t) = 0,
hence t = 0, contradiction. It follows that max{|tnk] : 1 < k < m,} — 0.

From this and the hypothesis we get | max P{|X,; +tar| > €} — 0 for
SJISMmn
each ¢ > 0. The proof now reduces to the following: if {Y,; : 1 < j <

mp,n = 1,2,...} are such that {Y,,; : 1 < j < m,} is independent for each n,

Joax P{|Y,;| > e} — 0asn — oo for every € > 0, E7(Y,x) = 0 and {Z Y.}
<<

j=1
converges in distribution to p then p is i.d.. Denoting the distribution of Y;,x

by fi,), we get |1 — EeiYnk| = ‘/{eim -1- itT(x)}dMnk‘ < % / w2 dptyy +
{lz|<1}

(2 + [t])dp,y,. Hence |1 — Ee'¥nr| < % / {7(z)}2dp,y, + / 2+

{lz[>1} , {l=[<1} {lz[>1}
[t {7 (@)} 2dp < (5 +24t) E{T(Yy;)}?. Writing Log for the principle branch
of logarithm (defined on C\(—oc,0]) we see that for any A > 0, LogEe!Y* is

well defined for [¢t| < A for all k: provided n is sufficiently large. [ This is be-
cause max |1 — Ee”yﬂ/k| — 0 as n — oo uniformly on compact sets]. Now

‘LOgEe—itYnk _ {Ee—itYnk _ 1}’ < 2 ‘Ee—itynk _ 1‘2 for \t| < A and n suffi-

ciently large. | We used the inequality |Log(1+ z) — 2| < 2|z|? for |z| < L

2
|Log(1+2) — z| = ’—Z—; —i—% - <3 2]_ Also Z|1_EeitYnk|2 <
=1

My,

max ’1 — EeitX"’f} Z |1 — Eeity'"k‘ < max ‘1 — EeitXnk

2
1<k<mn, et 1<k, (5 +2+ [t)en
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where ¢, = ZE{T(YnJ’)}Q. It follows that Z LogEe~tYnk = Z{Ee’“ynk -
j=1 k=1 k=1

m s Moy, 6
1}+o0(cy) uniformly for [t] < A. Hence 35 Z /LogEeitYnkdt =L Z /{Eeitynk_
k=174 k=1"¢

My, My,

1}dt + 0(cy,). We now claim that ZLogEe*“Y"’C - Z{Ee“y’lk -1} =0
k=1 k=1

mp
it E Yok

uniformly for [t < A. Since Fe &=t — /e“wd,u(x) uniformly on com-
My My
pact sets we see that H EeitYnk —, /eimdﬂ(x) and hence ZLogEeitYnk -
k=1 k=1
Mnp 3
Log(/emdu(x)) uniformly on compact sets. Hence 55 Z /LogEe”Y"kdt —
k=1"
5

Mn 9
= Log(/e“"”du(x)). We have proved that - Z /{Ee“yﬂ”“ —1}dt+0(e,) —
k=175

—6
)

= Log(/eimdu(a:)). But the left side here is EZ{% —1}40(cp). Tt
s k=1

is easy to verify that 1 — S22 > g{r(2)}* for some a > 0. It follows now

that oF Z{T((SYnk)}Q + 0(c,,) remains bounded as n — oo. Since TT((;;)) is
k=1

bounded we see that agc, +0(cy,) is bounded for some ag > 0. This implies that

Mn My

{cn} is bounded. Since ZLogEe_”Y"’c = Z{Ee‘“y"k — 1} + o(c,) we now

k=1 k=1
Mn My
see that ZLogEe*“Y"’f - Z{Ee*itynk — 1} — 0 Vt. Hence /e“wd,u(ac) =
k=1 k=1
lim e*=1 = limer=1 = lime where p, =

My

Zunk. i, being the distribution of Y;,;. We have expressed /e““’du(z)
k=1
as the pointwise limit of a sequence of i.d. characteristic functions. [ Indeed

{eitl—l)du
e/ is an i.d. characteristic function for any finite measure v|. This
completes the proof.

Proof of b): if u is stable and X3, X5, ... are i.i.d. random variables with
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n
distribution g then and constants a,,b, with a, > 0 such that %{Z X +
k=1

n
bn} has distribution p for every n. In particulari{z Xk + bn} converges

[
k=1
in distribution to p. Conversely, suppose {X,} is i.i.d., a, > 0,b, € R and

i{z Xk + by feonverges in distribution to p. Let Z, = i{S” + by} where
k=1

S, = ZXk. Fix a positive integer = and consider {Zy, Zok, Z3k, .. .}. We can
k=1
write Z,p as L{Sq(ll) + 8P4+t 51(1]6)} + Z"*Z where S§) = Xi—1yn41 +

Ank

Xi—1yn42 + ...+ Xj,. Hence ai”(S,(Ll) +b,) + ai"(S,(f) +by)+...+ L(Sﬁ,,k) +

an

bn) = £ Zok + }Z“”—’“ — kb,,. We conclude that k7, ; + }Z”’“ — kb, converges in

distribution to p*(*) (the k— fold convolution of i with itself); also Z,, converges

to w in distribution. The Convergence of Types Theorem [Theorem 11 above]
k

shows that ZXj 4 apX1 + B, for some oy > 0,8, € R which completes the
j=1
proof.

Lemma 25

If 4 is i.d. and p, is the probability measure satisfying the equation p,, *
o * ... %, (n factors) = p then p,, — dp weakly.

Proof of the lemma: if ¢, is the characteristic function of px, and ¢ that
of p then we claim that log ¢, (t) = 8¢() ~ For this note that (elogf(t) )=

n
o(t) = (¢,,(t))™ so ﬁ(t)elogf(t) is an n— th root of unity which is necessarily a

constant (by continuity). Since this function has the value 1 at 0 we must have

ﬁelogfw = 1V¢t. Now the facts that log ¢,,(t) and % are both continuous,
vanish at 0 and e~ = elos®() = ¢ (¢) imply that log ¢, (£) = % vi. It
follows now that ¢,,(t) = e 1 asn — oo Vt. Hence o, — 0o weakly.

Theorem 26

If 14 is a symmetric S(«) probability measure with 1 < o < 2 then the
support S of p is {0} or R.

Proof: recall that aX +bY < (a®+b)Y X if {X, Y} is i.i.d with distribution
pand a,b > 0. It follows that aS+bS = (a®+b*)1/*S. Take a = b = 1 and note
that —S = S to conclude that 0 € 2'/%S. Hence 0 € S. Now taking a® +b® = 1
we get aS C aS + bS C S. Clearly this implies that aS C S for 0 < a < 1.
Also taking a = b = 27V we get 271/*§ +271/*§ = §; hence 2!-1/2§ C §
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(: if z € S then 2'7Vog = 27V/ag y 9= Vay ¢ 271/ag 4 9-1/og = G). By
iteration we get 2"(1=1/9)§ C § Vn. Together with the fact that aS C S for
0 < a < 1 this shows that S C S Va > 0. This implies aS = S Va > 0.
By symmetry the same equation holds for all @ € R. Now we can go back to
aS +bS = (a® +b*)1/*S to conclude that S+ S = S. Hence S is a subspace of
R. Of course, {0} and R are the only subspaces of R.

Remark: this proof works for stable measures on Banach spaces.

Proof: if i is a measure then p x 0, is a symmetric Gaussian measure for

some z (namely x = /yd,u(y)) and we can use the there with o = 2.
B

Theorem 27 [Stable Characteristic Function]
Let p be S(«) with characteristic function ¢. Assume that 0 < a < 2.

a) If o # 1 then log¢(t) = —c|t|” {cos Z* + iBs(t)} + idt where ¢ > 0 or
¢ < 0accordingasa<lora>1,8€[-1,1] and d € R.

b) If o = 1 then log ¢(t) = —c|t|{F +iBs(t)log |t|} +idt where ¢ > 0,d € R
and g € [-1,1].

Remark: conversely above expressions are necessarily characteristic
functions of stable distributions. This result will not be proved here. See
the remark immediately after the statement of Levy’s Spectral Representation
Theorem in Volume 1)

Using uniqueness of Levy - Khinchine representation it is fairly straightfor-
ward to see that the Levy measure v of an S(«) measure p satisfies the relation
nv(E) = v(n~Y*E) or nu(n'/®E) = v(E) for all Borel sets E. Note that v is
not the zero measure because y is not normal. Let hy(z) = / y2idu(y), he(z) =

(0,2]

y2dv(y) and h(z) = hy(z) + ha(z) = / y2dv(y) for z > 0. To find out

[~,0) [~x,x]
how these functions look like we need two lemmas.

Lemma 28

Let f : (0,00) — [0,00) be a non-decreasing function such that h(z) =

tlim ff((tg) exists and if finite Va € (0, c0).

Then, either there exists p > 0 such that h(z) = 2° Vz or h(z) =0 Vz.

29



Proof of the lemma: since f}t(mti’) = ff((tfxy)) ff(ff)) we have h(zy) = h(y)h(z).
Hence, if h(z) = 0 for some = then h = 0. Assume now that h(x) > 0 Vz. Then
log h(e®) is an additive measurable function on R and hence there is a constant
c such that log h(e®) = cz. This gives h(z) = e”!°8% = g for some real number

p. Since f is non-decreasing it follows that p > 0.
Lemma 29

Let f : (0,00) — [0,00) be a non-decreasing function such that h(z) =
lim 3, f(a,z) exists and € (0,00) Vo where {a,} and {8, } are sequences of
n—0oo

positive numbers such that a, T oo and % — 1. If A is also continuous then

n

h(z) = cx? for some ¢ > 0 and some p > 0.
Ift > a; then there exists n such that a,, <t < a,41. Hence Busr _Buf(anz)

ﬁn ﬁn+1f(an+1) -
ft) < Pu_Puerfliniaz) h) () [t)  hi)

F0 S B g Which gives 1 < liminf e < limsup 7t <
proving that Jim G = 5.
2%8 = x”. The proof is complete.

By Lemma 29 there exists p > 0 such that

Now let us recall the definitions hy(z) = / y2dv(y), he(z) = / y2dv(y)

(0,2] [—z,0)

and h(z) = hy(z) + ha(x) = / y2dv(y) for z > 0. Observe that h(z) < co Vz

[_waiv]

because / y2dv(y) < oo and v({x : |z| > 1}) < co. Continuity of h follows

{lz[<1}

from the fact that v is a continuous measure; indeed nv{z} = v{n~
o0 o0

Z Lp{a} = Zl/{nl/o‘x} < w{y :|y| > 2} < oo forcing v(x) to be 0. From

n=1 n=1

the fact that nv(E) = v(n~Y*E) we get h(n'/*z) = n(a—b / 22dv(z) =
[—I,I]

n(a=Yh(z). Hence n1~&)h(n'/*z) = h(z). By Lemma 30 it follows that

h(z) = cx? for some ¢ > 0 and some p > 0. By similar arguments the functions

hqi and hg also have the same form, say h;(x) = ¢;jz”i,j = 1,2. The equation

YVeg) so

/ y2dv(y) = c1zfr Vo > 0 implies that 2%dv(z) = cipyzr~tdx or dv(z) =
c1py P 3dx on (0, 00). Similarly, dv(z) = capy |#]”2 > da on (—o0,0) . We leave
it as an exercise to show that p; = p, = p unless ¢; = 0 or co = 0. [ Just look at
the highest of the numbers p, p;, ps]. If ¢; = 0 then p; can be replaced by p, j =
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1,2. Hence we can assume that p; = py = p. Then dv(z) = ¢1pa?~3dx on (0, 0)
and dv(z) = cop |2|” " dz on (—o0,0). To find the value of p we use the relation

min{1,y?}dv(y) < oo. This gives 0 < p < 2. Now nv(1,00) = v(n~/* c0) so
oo (o)
/nclpaxp_3da: = / c1pz’3dx or nclpflp = clppijn_i(p_m which implies

1 n—l/a

Crz~17%dx on (0,00)
p = 2 — . We have shown that dv(z) = { Co 2™~ d on (—00,0) (where
rifa>1
Cy =c1p and Cy = cap). Let 74(z) =< sinzifa=1 .
Difa<1
oo 00 0
Then / Ta(2) — i | dv(2) = Cy / Ta(®) = piz |27 da+Cy / Tal(@) = | |2] 77 do
—00 0 —00
= Cl/ Talx) — # 1%y + C’g/ Talx) — 1fx2 xz~17%dz. It is clear
0 0
that both the terms on the right are finite if 0 < a < 1. If @ > 1 then

To (.’L') - 14’;‘232

/

0
00

similarly, /
0
c. [
0

oo

/

— 00

I P o x27a
x dr = /—Hmzdx < oo and,

o ] _ _ _z
T dr = /‘x Tra?
0 0

oo
717 %z < 0o0. ifa = 1 then Cl/ ‘sin:c — H% x 2dz+
0

To(?) — 52

x72dz < oo because |Smx$1| is bounded in (0,1). Thus

: __z
sinx — 17

Ta(®) = 92

dv(z) < oo in all cases. Using the Levy-Khinchine represen-

oo
tation we can now write log ¢(t) = ict — t?0%/2 + / {elt® —1 — IT;Q Ydv(z) =

— 00

idt—t20% )2+ /{eitxflfitTa(z)}du(x) where d = ¢c— /{#fTa(x)}dz/(x)

where v is the Levy measure of . Let ¢(t) = / {eit® —1—it7,(z)}dv(z). Recall

that nv(E) = v(n~Y*E). We can assert now that tv(E) = v(t~V/*E) Vt > 0.
Crz~t=%dz on (0, 00)

Indeed, this is an easy consequence of the fact that dv(x) = { c |x|_1_°‘ dz on (—00,0) °
2 - 9
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If @ > 1 then 9(¢) / {eit® — 1 —itro(x) }dv(z / {ei® — 1 — itx}dv(z)

= / {e —1—iy}t®dv(y) = at® for t > 0, where a = / {e¥ —1—iy}dv(y).

— 00 — 0o

Similarly, ¢(t) = bt® where b = /{ew — 1}dr(y). We now evaluate a and b.

— 00

Let a < 1. Thenb—Cl/{e’y 1}y=—t= O‘dcc—l—Cg/{e‘y 1} |y~ dy. To com-

— 00
pute /{e“’ — 1}y~t=2dy we consider /{e’:y_)‘y —1}y~t=%dy where A > 0. We

oo

have /{eiy_/\y — 1}y ody = 2 {ev W — 1} - /%{eiy_)\y(i_ Ay =

0
00

o0
%/y—aeiy—/\ydy — %)ﬁ*l/x—aeil’ﬂ—wdx = iz A)\a 1% using the
0 0

fact that /eimewxr’ldx =I(r )(1 o8 [ This is the Gamma characteristic func-
0

tion]. Letting A | 0 we get /{eiy — 1}y~i7%dy = Lem(-2T(1 — a) =

—Le=ma/2D(1 — a). Since /{eiy — 1}y Ty = /{e‘iy — 1}y t=dy is
0

the complex conjugate of /{eiy — 1}y dx we get b = —C’lie_’”a/QF(l —

0
@) — Ca2ePi@/2T(1 — «). Hence, log ¢(t) = idt — t20% /2 + 1)(2)

= idt —t20%/2— Cy Ltee ™21 (1 — o) — Cot* L eP@/2I(1 — ). Recall 0 = 0
whenever a # 2. Thus,

B(t) = eidte=Crige” A=)t =Cag e PR1-o)t™ for ¢ > 0 and 0 < a < 1.
This implies that ¢(t) = eidte= It {C1e™™ /2 +C2e”*/2}T(1-0) w4 ¢ Rif 0 < @ <

. _plalfd—a) LT Co—C1 ;' nma
1. From this we get ¢(t) = eidte™ 1" (CrCa)icos s gimey sin 51 - Ry
oo

a > 1 we have to evaluate /{eiy_)‘y —1—idy}y~17%dy. To do this we just note
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that d/{e”y 1—ity}y~ 1=y = /{e”y 1}(iy)y 1 ~dy —z/{e”y 1}y dy

and the integral here has been computed We leave it to the reader to complete
the proof of the theorem for the case o > 1.

Now let o = 1. Recall that ¢(t) = eiet=1"7"/2+h(t) where h(t) = /(em” -

1 —itsinz)dv(z). Also, dv(z) = c1751(0,00) + 275 (—000) and o = 0 (as
00 0

seen before). Hence h(t cl/ M_l m’mxdx + ¢y / wdz Con-
0 —o00

oo

o0
sider Re/ ””—lx itsinm go. _ /COSt.L costw—1 .. _ m/cosy 1dy _ gm Also,
0

oo oo

Im/ elt® 1 ztbma:dx /sm(tx) tsmzdw Lete > 0,t > 0and COHSIdGI‘/WCZ
€
oo [ee] €
/—S“;J%x - tffdx = t/—“gf)dy - t/—dx = t/““dx — tlogy as
€ € et € et
I
e — 0. [ We used the fact that ¥2£ — as z — 0+ and t/%dw = —tlogt].
et
Making obvious changes when ¢t < 0 we get Im/il Toloitsing g, — —tlog ‘71|
[ee]
Thus /Mdm — 3 |t] —itlog . Now h(t) = cr{~ 3 |t| —itlog 1} +
0

0
co{ =75 |t| + itlog ﬁ} [Because /Mdm is the complex conjugate

x

— 00
o0

of /emflxg“smzdx]. Thus, 6(t) = eict+cl{—§\t|—z‘tlog ez {—%|t|+itlog ﬁ}.To

0
complete the proof we write ¢1{—7 [t| — itlog ﬁ} + co{ =5 [t] + itlog I%I} as

—[t| (c1 + c2)F +it(ca — c1)log ﬁ = —|t|{(c1 + c2)5 +i(c1 — c2)s(t)log ﬁ}
1ift>0
where s(t) =< —1ift <0 .
0ift=0
Writing C' for ¢ + ¢ and f for 52 we get ¢(t) = eict e—Cltl{ 5 +iBs(t) log|t]}

Exercise: suppose p is S(1), not necessarily strictly stable. Let X,Y be i.i.d
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with distribution g and a,b > 0. Show that aX + bY < (a+0)X + Cp{(a +
b)log(a +b) — aloga — blogb} where |5] <1 and C > 0. Also show that there
exist S(1) distributions which are not strictly stable ( and no translates of which
are strictly stable).

Hint: e—clt{Z+iBs(®)logltl}+idt jg glways a stable characteristic function with
a=1ifc>0,d € Rand g € [-1,1]. [ Take this for granted]. Take 8 #
0. In particular, ¢(t) = e =518t (¢ = 238 = 1); in this case ¢*(t) =

p(2t)ex 108Dt or X + X, Lox, + 11og2.

It can be shown that the support of a stable law is of the form [a, c0) or the
form (—oo,a). If X is N(0,1) then the support of ¥ = 5 is [0,00). [ Indeed,
P{a <Y < b} > 0 whenever 0 < a < b < o0]. Hence any interval of the
type [a, 00) or of the type (—oo,a] is the support of a stable law. [ Just look at
translates of Y and —Y.

We state without proof a construction of stable random variables using ex-
ponential random variables.

Theorem 30

Let 0 < @ < 2 and {¢,} be i.i.d. random variables with F |£;]|" < co. Let
T, =Y1+Ys+...+Y, where {Y;} is i.i.d. random variables with P{Y; <t} =
1—etift>0
{ 0ift <0 2

a stable random variable with index «.

o0
. -1/ . .
. Then the series E Tn / &, converges a.s. and its sum is

Stable versus normal

If X is a normal random variable then P{X > ¢} tends to 0 at an expo-
nential rate as t — oo. In contrast, if X is stable with index o < 2 then
t*P{X > t} converges to a positive finite limit. In other words, the tail prob-
ability P{X > t} tends to 0 at the same rate as t~*. In view of this stable
random variables are said to have a heavy tail. Stable distributions are used
extensively in Mathematical Finance because of this heavy tail property. More
results on stable laws appear on Volume 2 where infinitely divisible and stable
laws on Banach spaces are discussed.

Positive Stable Distributions

Theorem 31
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oo
A probability measure u supported by [0, 0o) is stable if and only if /e_mdu(x) =
e=et" =% (+ > 0) for some ¢ > 0,b>0and 0 < a < 1. ’
We prove several propositions before proving above theorem.
Proposition 32

If X is a positive non-constant stable random variable then the index « of
X is less than 1.

Proof: suppose, if possible, « = 1. Let {X,,} and S,, be as before and note
that So 4 2X, + b for some b. If b > 0 then Sy > b and hence X; > g a.s..
But then S5 4 2X7 + b > 2b. This in turn implies X; > b and hence S5 > 3b,
etc. By induction we get Sy > nb for every n, a contradiction. If b < 0 then
2X1 + b 4 S s0 2X; +b >0 and X; > %. This gives Sy > |b| and hence
2X; +b £ S, > [b| which implies X; > [b|. This gives Sy > 2b| etc. By
induction we get S > n |b| for every n, a contradiction. We have proved that

b = 0 and hence S3 L ox 1. This implies that if N is a positive integer then
on

Son £ 27Xy, But 2Son > & Y min{X;, N} — Emin{X;, N} as., by Strong
j=1

Law of Large Numbers. Hence X; > Fmin{X;, N} a.s. for every N. We have
proved that X; > E X7 a.s. which implies that £ X7 is finite and since X; — F X4
is a non-negative random variable with zero mean, X is degenerate. We have
proved that a # 1. Suppose a > 1. Then S, 4 nt/*X, + b, for some b,. Also
EX,; < co. Hence nEX; = ES,, =n'/*EX, +b, and b, = (n — n"/*)EX,. If
Y,=X,—-EX,thenY1+Yo+...4Y, =5,—nEX; 4 nt/* X, +b, —nEX; =
(n*eY; + n/*EX)) + b, —nEX; = n'/*Y; > —n'/*EX,. Since {Y;} is i.i.d
this implies Y7 > f%nl/D‘Yl — 0. Hence X; > EX; a.s. which forces X to be
degenerate.

Proposition 33

For every a € (0,1) there exists a positive random variable with an S(«)
distribution.

We claim that if ¢ > 0 then (Z;e_c’fa > 0if nis even and < 0 if n

is odd. For this we begin with Le=" = —cat®le=*'" and apply Leib-

n
: d"tl et L N e a—1
niz rule to get Jmgre = E P st (—cat®™"). Note that
‘ k=0
] _ . oy . . .. .
%(—cato‘ 1) is positive or negative according as j is odd or even. A sim-
ple induction argument proves our claim. [ For instance, if we know that
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k o . . . . . n+1 o
C‘lit—ke_“ > 0 if k is even and < 0 if k is odd provided k < n then %e‘d =

n
Z < " ) 4 g—ct™ d" " (—cat®™1); suppose n is even. Then for k odd < n > %e*‘:t(’ C‘li;i]; (—cat®1) <

e ) @ " G A
k=0

k «@ n—k k «@
0 because i—ke_“ < 0 and (ftnﬁ(—cata_l) > (. For k even i—ke_“ >0 and

n—k . n k a gn—k
4 (—cat®~!) < 0 so we again have ( I > A et A (—cat®™1) < 0. Tt

follows that j;%e’“n < 0 Vt. Similar argument works for n odd and the claim

follows by induction]. Now, by a well-known theorem on Laplace transforms (
see, e.g. XIIL.4, Theorem 1 of An Introduction to Probability Theory and its
Applications by Willaim Feller, Vol. 2) we conclude that there exists a Borel

probability measure p on [0, c0) with / e tdu(x) = e=" (t > 0). Since the
[O’OO)
Laplace transform of the convolution of two measures in the product of their

Laplace transforms we get (with usual notations) Fe™%» = ( / e du(z))" =
[O’OO)

et — Fe—tn'"X1) vt which implies S, 4 pl/ex,. 1t follows that e—*" is
the Laplace transform of a positive (strictly) stable random variable.

Proposition 34

Let X be positive, strictly stable with index a and non-degnerate. Then
Ee X = ¢~ (¢ > 0) for some ¢ > 0.

Proof: let f(t) = log Ee™tX. Since Ee~t""/"X = Fe~t9 = (Ee~tX)" we
get f(n'/t) = nf(t) Vn > 1Vt > 0. Also f is continuous. It follows that
f(:;l—//c;t) = 2 f(t) Yn,m > 1 and hence f(s¥/t) = sf(t) Vs,t > 0. Put t =1
and replace s by s* to get f(s) = s®c where ¢ = f(1). Thus Ee '¥ = /() =
et” . Necessarily ¢ > 0.

We are now ready to prove the proposition. Let i be a stable measure with
1([0,00)) = 1. [ We already know that u is absolutely continuous so {0} = 0].
We know that o € (0,1). Let p ., be strictly stable. Let ¥;, = X,, — c¢yp. Then

Yi+4Yo+ ...+ Y, inl/aYl and Y7 > —cg so Yi+Yo + ...+ Y, > —ncy and

nt/oy; > —ncy or Yy > —nlféco. Letting n — oo we get Y7 > 0. Since Y;
is non-negative, strictly stable and non-degenerate we have Ee tY1 = =" for
some ¢ > 0. Hence Ee *X1 = =" ¢! and the proposition is proved. [Since
Ee %1 < 1 we get —ct® + tcg < 0Vt > 0 which implies ¢y < 0].

Theorem 35
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Let 41 be stable with characteristic function with log ¢(t) = —c[¢|* {cos Z* +
i8s(t)} +idt and 0 < o < 1. Then p(0,00) =1 if and only if 0 < aw < 1,0 > 0
and 8 = 1.

Proof: suppose p((0,00)) = 1. Then 0 < a < 1. We have to show
that 5 = 1 and b > 0. We claim that the Levy measure v is also concen-
trated on (0,00). Suppose z is in the support of v so that v(zg — &,20 +
€) > 0 Ve > 0. For any finite measure A\ we write e(\) for the probabil-

oo

ity measure e *®) Z )‘T(,n) (/\*(”) being the n— fold convolution of A with
k=0

oo
itself). The characteristic function of e(\) at t is e=*®) Z/em”d%(!") =
k=0

—A(R) o 1 ita n _ _—A(R) /e“m,\(w) /{6”“1}/\(:1:)
€ > m(/e Az))" = e *Pe =e . Note that nag
k=0

i ot . |zol
belongs to the support of e(v1) where v is the restriction of v to {x : |z > =

}.

[ This is because ui(n)(nxo —enwg +¢€) > {vi((wo — 5,20 + £)}"]. Re-

ict— (eitz—l— 13::2 )dv(x)

call that ¢(t) = e for some constant c. Let p, be the

ic't— / (em”—l—li:;”2 Ydv(z)

{z:]x| < 201y

measure with characteristic function e where

d =ct+ / T2 dv(z). Then p = po*e(vy). [ The characteristic functions

{w:]a]> 1501}
of the two sides coincide]. If y belongs to the support of p, then y+nzg belongs
to the support of  and hence y + nxg > 0 Vn. Hence xg > 0 proving that v is
supported by (0,00). Since dv(z) = Clm’1*a1{1>0}d$ + ng’lfaf{m@}dm we

get Co = 0 and 8 = gi;gg = 1. Also S, —nb < nt/*(X; —b) > —nt/
so S, > nmb — n'/*b. This implies X; > (1 — n'/* )b If b < 0 then
(1 —n!*=1)h — oo which leads to the contradiction X; = oo a.s..

Now we prove the converse. Suppose 0 < a < 1,8 =1and b > 0. We can
write (1 as pq *dp with py strictly stable. The Levy measure of 4, is the same as
the Levy measure v of . Since 5 =1 we get Co = 0 so v(—00,0) = 0. The char-

o0

ib1t+cl/(e“m4-%){1*%3:

acteristic function ¢, of u, is given by ¢,(t) = e 0
o0

ib1t+C1 / (e“w—l)zflfo‘dfc

Since p, is strictly stable we get ¢, (¢) = lime /n I A, s
the restriction of v to (+,00) then e(),)(—00,0) = 0 and p, is the weak limit of
An. Hence py(—00,0) = 0. It follows that u(—o00,0) = uy(—00, —b) = 0 because
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b>0.
Theorem 36

Let X and Y be independent strictly stable random variables with indices
o and f respectively. Suppose Y > 0 a.s.. Then XY/* is S(af).

Proof: if {X,,} is i.i.d. with the same distribution as X and {Y;,} is i.i.d.,
independent of {X,,}, with the same distribution as Y then {X,LYnl/a} is ii.d.
n

with the same distribution as XY/, Tt suffices to show that ZXijl/a <
j=1
nt/(@B) Xy1/a for each n. Recall that aX1 + ng (ao‘ + b)Y X,. A simple

induction argument shows that Z a; Z a®)'/* X, for any n and any pos-
Jj=1 Jj=1
.. 1/a
itive numbers a1, ao, ..., a,. Hence, the conditional distribution of ZX F
Jj=1

given Y7,Ys,...,Y, is equal to that of ( Z Y;) 1/‘1X1 which is equal to the dis-
j=1
tribution of (nl/ﬁ)l/o‘XlYll/a. The proof is completed by taking expectations.

Remark: an interesting special case is when a = 2. If X and Y are i.i.d.
with N(0,1) distribution then =] XI has Cauchy distribution.

Remark: stable have densities but these do not have a closed form. Series
representations of the densities are available.

Remark: Marcus (Z.W., V 64, 1983, 139-156) showed that if ¢(¢,s) =
elrcos(3) =" where 0 < a < 1 and t 4 is = re'?(r > 0,6 € R) then ¢ is

the characteristic function of a distribution on R? which is not stable but its
marginals both have stable distribution with index «.

Series Representation of stable laws [due to Le Page]

Lemma 37

Let T;,1 < j < N +1 beiid. exponential with parameter 1. Let S =T +

To+...+TNy1. Then (%, %, R S 2 ) has an absolutely continuous distribution
whose denSity f is given by f(xla Zo, .. 7xN) - n'I[O,oo) (xl)I[O,oo) (.’172) s I[O,oo) (xN)I{m1+12+,..+mN§1}'

We leave the proof as an exercise. [ Write down the joint distribution of

%, %, ey TTN, S, make a suitable change of variable and use the formula
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TN+1 0 . . T
0 TN+1 PR T2

det . . o = m%H a seen by the first N

N
—TN4+1 —TN41 - - 1—ij
Jj=1

rows to the last row.
Theorem 38

Let I'1,T'9,... be the arrival times in a Poisson process with parameter 1.
Let {e;} be symmetric {—1,1} valued random variables independent of I';s. Let

(o)
0 < @ < 2. Then Z &‘jF;l/a converges a.s. to an S(a) random variable.
j=1

Proof of the theorem: P{Z stj_l/o‘ converges /T'1, Iy, ., } =1
j=1 ) r-2ecoo)
j=1

by the three-series-theorem (or by the fact that R is of type 2 and cotype 2).
oo

By Strong Law of Large Numbers % — 1 a.s.. Hence ZF_Q/Q < 00 a.s. and
j=1

Zgjfj_l/a converges a.s.. Let {U,} be i.i.d., independent of {¢;}, having uni-

j=1

form distribution on (0, 1). Let X; = sjUj_l/a. Then {X;}isii.d. and we claim
N N

that N—1/« ZXj 4 (T yt/a Zejfgl/a. Once this is proved the theorem

j=1 j=1
Nk 2N

N
follows easily: WZ)Q = ﬁ{ﬁ ZXJ'}—F ﬁ{ﬁ Z X+

j=1 j=1 j=N+1
Nk

N e}

1 1 R Cni1y1/a /e d e

vt ma e E X} since (=) / E ;L' — E ;1 as
J=N(k—1)+1 j=1 j=1

N — oo we get R Yo Ry + bRy + ..+ e Ry, where {R;} is ii.d. with
[ee)

kl/«
same distribution as Z € I‘j_l/ %, This proves that the symmetric random vari-

j=1

o0
able Zejf;l/ ® has stable distribution with parameter o. To complete the
j=1

N N

proof we now show that N1/« Zerj_l/a 4 (R y1/e Zsjfj_l/a. We be-
j=1 j=1

gin with the following fact: if {U(y), Uy, ..., Uny) is the order statistics from
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{Ul,UQ, . U } then (U(l),Ug),.. U(N))) g ( L L2 Ly ) This

I'ny1? vy ' TNt
is easy: write down the joint distribution of L =, %,...,7;. ,S as above and
make a change of variable. [ Show that the joint density of (1;1 , %, cee FTN)

is N o<z, <z<...<x,<1} Which is also the joint density of (U1), U2y, ..., Uny))]-
N

Assuming that €5, 1"} s and U}s are independent of each other we get N1/« Z X, =

j=1
N o d N o d N
“1/a —1/a d —1/a —1/a d 1/« Ty =1/«
N7y egUy T S NTHOY Ut S NTYY Tei(mt) Y
j=1 j=1 j=1
N
= N_I/O‘ZEJ'F;UO‘ }\?il = ZEJ ~1/a m)l/o‘ which finishes the proof.
j=1

Corollary 39

Let X have a (non-degenerate) symmetric stable distribution with index .

ThenX—cZE] e for some ¢ > 0
j=1

Proof of corollary: Ee** = e=<I” for some ¢ > 0 and hence the corollary
is immediate.

Exercise

(oo}
Using arguments similar to the above show that ZF;U % converges a.s.
j=1
and has a positive stable distribution with parameter a.
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